
Почему размер людей получился идеальным для бега
Самое быстрое сухопутное животное — это гепард, который способен разогнаться до 104 км/ч. В воде самые быстрые — рыбы из семейства скумбриевых желтопёрый тунец и колючая пеламида (ваху), которые могут плыть со скоростью 75 км/ч и 77 км/ч соответственно. В воздухе самым быстрым летуном признан (даже когда не пикирует) белогорлый американский стриж, достигающий 112 км/ч.
Исследователи провели кропотливые расчёты и выявили закономерность для наиболее скоростных созданий. Выяснилось, что они наряду с похожими животными ни слишком крупные, ни чрезмерно мелкие, а оптимально среднего размера.
Массе тела у животных соответствуют биологические параметры. Например, пропорционально возрастает длина ног. Но длинные ноги — это не главное для скорости, так что крупнейшим существам на суше, слонам, далеко до рекордов.
Австралийский специалист в области биомеханики Кристофер Клементе с коллегами смогли изучить вопрос основательно. С помощью виртуальной модели человеческого тела, путём сравнения движений конечностей и мышц, они выяснили, что способно ограничивать скорость. А также обобщили важные сведения об эволюции человеческого тела на протяжении тысячелетий.
Ещё с начала 2000-х годов учёные развивают компьютерную модель OpenSim, где учитываются все кости, мышцы и сухожилия. Размещённая для всех интересующихся в свободном доступе, она уже послужила при разных исследованиях подвижности человека, физиологии спортивных упражнений и для прогнозирования того, как хирургические операции повлияли бы на мягкие ткани.
Затем, в 2019-м, бельгийские исследователи создали с помощью OpenSim симуляцию с учётом законов физики. Вместо того чтобы задать модели параметры передвижения, они указывали только линейные скорости. Так удалось определить, какие сочетания мышц задействованы, чтобы ходить или бегать с заданной скоростью.
Со временем идея поиграть с величиной пришла в головы научному коллективу Кристофера Клементе. Например, что будет, если уменьшить модель до размеров мыши или раздуть до габаритов слона?
Задумано — сделано! Учёные для сравнения со стандартной компьютерной имитацией человека массой 75 кг поиграли с весом в обе стороны. Они то указывали для облегчённых виртуальных человечков показатели вплоть до 100 г, а то шли на повышение, с пределом до 2 т. И при этом моделям велели бегать с максимально возможной для них скоростью, с поправкой на законы физики.
В результате выяснилось несколько интересных вещей. Во-первых, компьютерный колосс весом 2 т не мог двигаться точно так же, как и компьютерный человечище массой 1 т. Да он вообще никуда не пошёл бы! Самая большая модель, которой биомеханическая логика позволила двигаться, весила 900 кг. Таков верхний предел условно-реалистичных великанов, пусть и компьютерных. Да и то, чтобы куда-то пойти при такой массе, подобным гигантам пришлось бы измениться, они не были бы с точно такими же пропорциями, как и мы.
Также выяснилось, что самая быстрая модель не была ни самой большой, ни самой маленькой. Воплотись самая скоростная версия, она бы весила около 47 кг. То есть примерно столько же, сколько средний гепард. Но почему?
Кривая, описывающая зависимость максимальной скорости бега от массы, оказалась той же формы, что и линия зависимости максимальной силы отталкивания от земли. Что логично: дабы перемещаться быстрее, нужно энергичнее отталкиваться от дороги.
Но почему же более крупные модели не могли сильнее отталкиваться от земли? Их возможности были ограничены мускулатурой. Способность мышцы развивать силу связана с площадью её поперечного сечения. Но если сравнивать животных по нарастанию веса, то масса их мышц растёт быстрее площади поперечного сечения. Иными словами, мышцы более крупных животных относительно слабее. Мускулы начинают «перегружаться» при превышении максимальной скорости, и поэтому более грузным моделям приходилось замедляться.
На второй иллюстрации — зависимость скорости и размера бегущих животных в виде синих точек показывает, что виды среднего размера, тот же гепард, обычно оказываются быстрейшими. Сгенерированные компьютером модели людей в виде оранжевых точек, которые затем масштабируются величиной от мыши до лошади, подтвердили ту же закономерность, имеющую в основе биомеханические причины.

На другом конце спектра — миниатюрные модели, у которых относительно сильнее мышцы, но есть проблема с гравитацией, ведь они слишком лёгкие. В реальности попытки «гномов» оттолкнуться от земли повышали бы прилагаемую силу, но при этом их тела раньше отрывались бы от дороги.
Чтобы создать больше силы при соприкосновении с землёй, мелким моделям пришлось сгибать ноги, как это делают мыши или кошки. Приспособленная походка позволила бы им дольше оставаться на земле и создавать больше силы, как это бывает во время прыжков на месте. Но это требовало времени, так что длительность усилий замедляла шаг. В общем, миниатюрные версии человека не смогли бы бежать быстрее.
Итак, природа заложила компромисс между силой отталкивания от земли и частотой шагов. Оптимальное сочетание первого и второго возможно при достижении более выгодного размера, то есть массы.
Но какие выводы из всего этого можно сделать относительно эволюции человека? За десятки тысячелетий размер тела современных людей и вымерших предков, которых теперь заодно с нами называют гоминидами, колебался от 30-килограммового австралопитека афарского 3,5 млн лет назад до 80-килограммового Homo erectus, жившего почти 2 млн лет назад.
Как видим, в целом масса тела при эволюции нашего вида имела тенденцию к увеличению, и, по-видимому, скорость бега тоже. Существовавшие 300 тыс. лет назад и 50 тыс. лет назад гоминиды Homo naledi и Homo floresiensis весили 37 кг и 27 кг соответственно, так что несомненно теряли в скорости из-за своих небольших размеров.

Средняя масса тела современных взрослых людей — около 62 кг, что немногим больше, чем 47 кг, которые исследователи получили в результате компьютерного моделирования. Но это всё же ближе к идеальному рассчитанному весу. Интересно, что многие из самых быстрых бегунов на длинные дистанции, такие как кенийский стайер Элиуд Кипчоге, весят как раз около 50 кг.
Итак, современные люди настолько быстры, насколько вообще могут быть, без значительных изменений в строении мускулатуры.
Исследователи провели кропотливые расчёты и выявили закономерность для наиболее скоростных созданий. Выяснилось, что они наряду с похожими животными ни слишком крупные, ни чрезмерно мелкие, а оптимально среднего размера.
Массе тела у животных соответствуют биологические параметры. Например, пропорционально возрастает длина ног. Но длинные ноги — это не главное для скорости, так что крупнейшим существам на суше, слонам, далеко до рекордов.
Австралийский специалист в области биомеханики Кристофер Клементе с коллегами смогли изучить вопрос основательно. С помощью виртуальной модели человеческого тела, путём сравнения движений конечностей и мышц, они выяснили, что способно ограничивать скорость. А также обобщили важные сведения об эволюции человеческого тела на протяжении тысячелетий.
Ещё с начала 2000-х годов учёные развивают компьютерную модель OpenSim, где учитываются все кости, мышцы и сухожилия. Размещённая для всех интересующихся в свободном доступе, она уже послужила при разных исследованиях подвижности человека, физиологии спортивных упражнений и для прогнозирования того, как хирургические операции повлияли бы на мягкие ткани.
Затем, в 2019-м, бельгийские исследователи создали с помощью OpenSim симуляцию с учётом законов физики. Вместо того чтобы задать модели параметры передвижения, они указывали только линейные скорости. Так удалось определить, какие сочетания мышц задействованы, чтобы ходить или бегать с заданной скоростью.
Со временем идея поиграть с величиной пришла в головы научному коллективу Кристофера Клементе. Например, что будет, если уменьшить модель до размеров мыши или раздуть до габаритов слона?
Задумано — сделано! Учёные для сравнения со стандартной компьютерной имитацией человека массой 75 кг поиграли с весом в обе стороны. Они то указывали для облегчённых виртуальных человечков показатели вплоть до 100 г, а то шли на повышение, с пределом до 2 т. И при этом моделям велели бегать с максимально возможной для них скоростью, с поправкой на законы физики.
В результате выяснилось несколько интересных вещей. Во-первых, компьютерный колосс весом 2 т не мог двигаться точно так же, как и компьютерный человечище массой 1 т. Да он вообще никуда не пошёл бы! Самая большая модель, которой биомеханическая логика позволила двигаться, весила 900 кг. Таков верхний предел условно-реалистичных великанов, пусть и компьютерных. Да и то, чтобы куда-то пойти при такой массе, подобным гигантам пришлось бы измениться, они не были бы с точно такими же пропорциями, как и мы.
Также выяснилось, что самая быстрая модель не была ни самой большой, ни самой маленькой. Воплотись самая скоростная версия, она бы весила около 47 кг. То есть примерно столько же, сколько средний гепард. Но почему?
Кривая, описывающая зависимость максимальной скорости бега от массы, оказалась той же формы, что и линия зависимости максимальной силы отталкивания от земли. Что логично: дабы перемещаться быстрее, нужно энергичнее отталкиваться от дороги.
Но почему же более крупные модели не могли сильнее отталкиваться от земли? Их возможности были ограничены мускулатурой. Способность мышцы развивать силу связана с площадью её поперечного сечения. Но если сравнивать животных по нарастанию веса, то масса их мышц растёт быстрее площади поперечного сечения. Иными словами, мышцы более крупных животных относительно слабее. Мускулы начинают «перегружаться» при превышении максимальной скорости, и поэтому более грузным моделям приходилось замедляться.
На второй иллюстрации — зависимость скорости и размера бегущих животных в виде синих точек показывает, что виды среднего размера, тот же гепард, обычно оказываются быстрейшими. Сгенерированные компьютером модели людей в виде оранжевых точек, которые затем масштабируются величиной от мыши до лошади, подтвердили ту же закономерность, имеющую в основе биомеханические причины.

На другом конце спектра — миниатюрные модели, у которых относительно сильнее мышцы, но есть проблема с гравитацией, ведь они слишком лёгкие. В реальности попытки «гномов» оттолкнуться от земли повышали бы прилагаемую силу, но при этом их тела раньше отрывались бы от дороги.
Чтобы создать больше силы при соприкосновении с землёй, мелким моделям пришлось сгибать ноги, как это делают мыши или кошки. Приспособленная походка позволила бы им дольше оставаться на земле и создавать больше силы, как это бывает во время прыжков на месте. Но это требовало времени, так что длительность усилий замедляла шаг. В общем, миниатюрные версии человека не смогли бы бежать быстрее.
Итак, природа заложила компромисс между силой отталкивания от земли и частотой шагов. Оптимальное сочетание первого и второго возможно при достижении более выгодного размера, то есть массы.
Но какие выводы из всего этого можно сделать относительно эволюции человека? За десятки тысячелетий размер тела современных людей и вымерших предков, которых теперь заодно с нами называют гоминидами, колебался от 30-килограммового австралопитека афарского 3,5 млн лет назад до 80-килограммового Homo erectus, жившего почти 2 млн лет назад.
Как видим, в целом масса тела при эволюции нашего вида имела тенденцию к увеличению, и, по-видимому, скорость бега тоже. Существовавшие 300 тыс. лет назад и 50 тыс. лет назад гоминиды Homo naledi и Homo floresiensis весили 37 кг и 27 кг соответственно, так что несомненно теряли в скорости из-за своих небольших размеров.

Средняя масса тела современных взрослых людей — около 62 кг, что немногим больше, чем 47 кг, которые исследователи получили в результате компьютерного моделирования. Но это всё же ближе к идеальному рассчитанному весу. Интересно, что многие из самых быстрых бегунов на длинные дистанции, такие как кенийский стайер Элиуд Кипчоге, весят как раз около 50 кг.
Итак, современные люди настолько быстры, насколько вообще могут быть, без значительных изменений в строении мускулатуры.
- Дмитрий Ладыгин
- youtu.be/DGjvGQO-_gI; nature.com; wikipedia.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

60 000 лет без розетки: Как пустыня Гоби зарядит весь Китай
Похоже, электричество будет дешевле воздуха....

Стеклянный свидетель катастрофы: что нашли в черепе человека из Геркуланума?
Ученые установили, как мозг превратился в стекло за считаные минуты....

85 миллионов лет в морозильнике: кто вытащил Землю из вечной зимы?
Ученые рассказали, почему ледяной ад пошел планете на пользу....

Археологи краснеют: стало понятно, почему Стоунхендж «встал» на века
Последнее исследование говорит, что в центре комплекса стоял почти 3-метровый фаллос....

Тающие ледники Норвегии открыли очередную порцию древних артефактов
Эксперты говорят: с каждым годом ледниковая археология становится все перспективнее!...

Двухэтажные кресла в корне могут изменить путешествия на самолетах
Почему многие эксперты и пассажиры настроены против этого проекта?...

Когда-то Марс был «пляжной» планетой, похожей на лучшие курорты
Марсоход «Чжужун» обнаружил берег древнего океана. Осталось найти жизнь…...

Посадка «Голубого призрака» на Луну прошла идеально
К тому же она оказалась весьма экономичной....

Самые мощные космические лучи во Вселенной потребуют переписать законы физики
Поразительное открытие было сделано недавно в России....

Вулкан поднимает древнеримский «Лас-Вегас» из итальянского озера
Уникальная вилла вышла наружу....

Skype доживает последние дни: в мае 2025 года Microsoft отключит его на Windows
Почему легендарный мессенджер был обречен уже много лет назад?...

Зато шерстистая: проект по возрождению мамонта создал… мышь
Учёные генетически сконструировали особенных грызунов. Но зачем?...

33 миллиона тонн льда в час: Гренландия тает быстрее, чем прогнозировалось
Новое исследование раскрыло сроки «переломного момента» для северных ледников....

Телепатия для всех? Ученые нашли способ «включить» скрытые способности мозга
Канадские исследователи разблокировали экстрасенсорику с помощью магнитных импульсов....

Истинная сверхсамка: крупнейший в мире клон нашли в Балтийском море
Простирается на 500 км....

Кот Шредингера, который гуляет сам по себе... и спасает квантовые технологии
История о том, как «кошачьи» кубиты от Amazon могут изменить будущее технологий без лишнего пафоса....