Ударили графеном по платине: в России нашли новый способ сэкономить на топливных элементах
Ученые из НИУ «МЭИ» использовали современные методы квантово-химического моделирования для изучения системы «водород-платина-графен». Они показали, как влияние графена на электрокаталитические свойства платины и как оптимизировать геометрию этой системы для достижения максимальной активности катализатора при минимальном расходе платины.
Топливные элементы — устройства, которые преобразуют химическую энергию водорода и кислорода в электрическую энергию без выделения вредных выбросов. Они могут быть использованы для питания автомобилей, домов и портативной электроники. Однако топливные элементы имеют один существенный недостаток — они требуют большого количества платины, дорогого и дефицитного металла, который служит катализатором для химических реакций на электродах.
Ученые из НИУ «МЭИ» нашли способ решить эту проблему с помощью математической модели наноструктурных электрокатализаторов на основе графена — двумерного углеродного материала с уникальными свойствами. Они показали, что платина может быть распределена по поверхности графена таким образом, чтобы увеличить ее эффективность и уменьшить расход. Для того, чтобы разработать математическую модель наноструктурных электрокатализаторов на основе графена, ученые использовали метод функционала плотности (МФП) — один из самых точных и распространенных методов квантовой химии.
Существует несколько типов топливных элементов, но самым распространенным является топливный элемент с протонообменной мембраной (ПЭМТЭ). Этот тип топливного элемента использует твердую полимерную мембрану в качестве электролита — вещества, которое проводит заряженные частицы между двумя электродами — анодом и катодом.
На аноде происходит окисление водорода — он разделяется на протоны (положительно заряженные частицы) и электроны (отрицательно заряженные частицы). Протоны проходят через мембрану на катод, а электроны движутся по внешней цепи, создавая электрический ток. На катоде происходит восстановление кислорода — он реагирует с протонами и электронами, образуя воду — единственный побочный продукт топливного элемента.
Для того чтобы эти реакции проходили быстро и эффективно, на поверхности электродов наносят катализатор — вещество, которое ускоряет химические процессы, не участвуя в них. Самым активным и стабильным катализатором для топливных элементов является платина — благородный металл, который не подвержен коррозии и отравлению. Однако платина имеет два существенных недостатка: она очень дорогая и редкая. Поэтому ученые ищут способы снизить ее потребление в топливных элементах, не ухудшая их работоспособность.
Один из способов сэкономить на платине — использовать ее в виде наночастиц, равномерно распределенных по поверхности углеродного носителя. Такой подход позволяет увеличить активную поверхность платины и уменьшить ее загрузку на электроде. Однако выбор носителя не менее важен, чем выбор катализатора. Носитель должен обладать высокой электропроводностью, химической стабильностью, хорошей адгезией к платине и мембране, а также способствовать формированию оптимальной геометрии наночастиц.
Один из наиболее перспективных материалов для этой цели — двумерный углеродный материал, состоящий из одноатомного слоя атомов, соединенных в гексагональную решетку. Графен обладает рядом уникальных свойств: он самый тонкий и прочный материал в мире, он имеет высокую тепло- и электропроводность, он гибкий и прозрачный, он химически инертен и биосовместим. Кроме того, графен может изменять свою структуру под воздействием различных факторов, например давления, температуры или электрического поля.
— ректор НИУ «МЭИ» Николай Рогалев.
Математическую модель наноструктурных электрокатализаторов для топливных элементов разработала научная группа кафедры Химии и электрохимической энергетики НИУ «МЭИ» под руководством профессора Сергея Григорьева в рамках реализации программы научных исследований «Приоритет 2030: Технологии будущего» в 2022–2024 гг.
Топливные элементы — устройства, которые преобразуют химическую энергию водорода и кислорода в электрическую энергию без выделения вредных выбросов. Они могут быть использованы для питания автомобилей, домов и портативной электроники. Однако топливные элементы имеют один существенный недостаток — они требуют большого количества платины, дорогого и дефицитного металла, который служит катализатором для химических реакций на электродах.
Ученые из НИУ «МЭИ» нашли способ решить эту проблему с помощью математической модели наноструктурных электрокатализаторов на основе графена — двумерного углеродного материала с уникальными свойствами. Они показали, что платина может быть распределена по поверхности графена таким образом, чтобы увеличить ее эффективность и уменьшить расход. Для того, чтобы разработать математическую модель наноструктурных электрокатализаторов на основе графена, ученые использовали метод функционала плотности (МФП) — один из самых точных и распространенных методов квантовой химии.
Как работает топливный элемент с протонообменной мембраной?
Существует несколько типов топливных элементов, но самым распространенным является топливный элемент с протонообменной мембраной (ПЭМТЭ). Этот тип топливного элемента использует твердую полимерную мембрану в качестве электролита — вещества, которое проводит заряженные частицы между двумя электродами — анодом и катодом.
На аноде происходит окисление водорода — он разделяется на протоны (положительно заряженные частицы) и электроны (отрицательно заряженные частицы). Протоны проходят через мембрану на катод, а электроны движутся по внешней цепи, создавая электрический ток. На катоде происходит восстановление кислорода — он реагирует с протонами и электронами, образуя воду — единственный побочный продукт топливного элемента.
Для того чтобы эти реакции проходили быстро и эффективно, на поверхности электродов наносят катализатор — вещество, которое ускоряет химические процессы, не участвуя в них. Самым активным и стабильным катализатором для топливных элементов является платина — благородный металл, который не подвержен коррозии и отравлению. Однако платина имеет два существенных недостатка: она очень дорогая и редкая. Поэтому ученые ищут способы снизить ее потребление в топливных элементах, не ухудшая их работоспособность.
Графен — идеальный носитель для платины
Один из способов сэкономить на платине — использовать ее в виде наночастиц, равномерно распределенных по поверхности углеродного носителя. Такой подход позволяет увеличить активную поверхность платины и уменьшить ее загрузку на электроде. Однако выбор носителя не менее важен, чем выбор катализатора. Носитель должен обладать высокой электропроводностью, химической стабильностью, хорошей адгезией к платине и мембране, а также способствовать формированию оптимальной геометрии наночастиц.
Один из наиболее перспективных материалов для этой цели — двумерный углеродный материал, состоящий из одноатомного слоя атомов, соединенных в гексагональную решетку. Графен обладает рядом уникальных свойств: он самый тонкий и прочный материал в мире, он имеет высокую тепло- и электропроводность, он гибкий и прозрачный, он химически инертен и биосовместим. Кроме того, графен может изменять свою структуру под воздействием различных факторов, например давления, температуры или электрического поля.
Кафедра Химии и электрохимической энергетики НИУ «МЭИ» продолжает работу по усовершенствованию электрокатализаторов. Сейчас наша основная задача — выпуск полностью отечественных энергетических установок на базе топливных элементов, разработанная модель делает большой шаг вперед к достижению этой цели. Кроме того, результаты работы по данному направлению позволят уменьшить потребление платины и сделать производство более дешевым и доступным
— ректор НИУ «МЭИ» Николай Рогалев.
Математическую модель наноструктурных электрокатализаторов для топливных элементов разработала научная группа кафедры Химии и электрохимической энергетики НИУ «МЭИ» под руководством профессора Сергея Григорьева в рамках реализации программы научных исследований «Приоритет 2030: Технологии будущего» в 2022–2024 гг.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
В России обнаружена рыба, которая 70 лет считалась полностью вымершей
И не единственная такая сенсация в нашей стране за последние годы...
От кабанов до беспилотников: гражданские радары из Китая сделали неожиданную карьеру в российской армии
Почему украинские эксперты жалуются, что россияне ведут войну не по правилам?...
«Инопланетный зонд», который преследует Землю, был сделан… в СССР?
Почему известный гарвардский астроном выдвинул именно эту версию?...
Тайна изумрудной мумии, не дававшей покоя ученым 38 лет, наконец-то разгадана!
Ученые признаются: они не ожидали, что им придется раскрыть самый настоящий химический детектив...
20-летнее исследование увенчалось полным успехом: ученые научились запускать самовосстановление... в сердце
Эксперты говорят: пробуждение спящих генов опровергает все медицинские догмы и дает надежду миллионам людей по всему миру...
Археологи обнаружили загадочную 2000-летнюю подземную комнату в Шотландии
Находка вызвала жаркие споры среди историков, но тайна до сих пор не раскрыта...
Автомобиль Tesla снова в центре громкой истории: В него на полном ходу, похоже, врезался... метеорит
Эксперты говорят: если все подтвердится, это будет первый такой случай истории...
Монгольский феномен: почему русский язык в этой стране не собирается сдавать позиции?
Новое исследование показало: русский уже победил китайский, теперь пора «разобраться» с английским...
Российский астроном открыл 16-ю комету: Почему именно она поразила ученых?
Успеют ли астрофизики раскрыть все тайны gb00810, ведь у них всего несколько недель...
В октябре 2025 года ураган Халонг на Аляске унес тысячи древних артефактов в океан
Ученые называют случившееся крупнейшей археологической катастрофой за последнее время. Будет ли восстановлено наследие целого народа?...
Почему ученые по всему миру восприняли в штыки план Илона Маска «затемнить Солнце»?
В ответ миллиардер назвал экспертов паникерами, которые мешают ему помочь человечеству решить одну из главных проблем современности...