
Ударили графеном по платине: в России нашли новый способ сэкономить на топливных элементах
Ученые из НИУ «МЭИ» использовали современные методы квантово-химического моделирования для изучения системы «водород-платина-графен». Они показали, как влияние графена на электрокаталитические свойства платины и как оптимизировать геометрию этой системы для достижения максимальной активности катализатора при минимальном расходе платины.
Топливные элементы — устройства, которые преобразуют химическую энергию водорода и кислорода в электрическую энергию без выделения вредных выбросов. Они могут быть использованы для питания автомобилей, домов и портативной электроники. Однако топливные элементы имеют один существенный недостаток — они требуют большого количества платины, дорогого и дефицитного металла, который служит катализатором для химических реакций на электродах.
Ученые из НИУ «МЭИ» нашли способ решить эту проблему с помощью математической модели наноструктурных электрокатализаторов на основе графена — двумерного углеродного материала с уникальными свойствами. Они показали, что платина может быть распределена по поверхности графена таким образом, чтобы увеличить ее эффективность и уменьшить расход. Для того, чтобы разработать математическую модель наноструктурных электрокатализаторов на основе графена, ученые использовали метод функционала плотности (МФП) — один из самых точных и распространенных методов квантовой химии.
Существует несколько типов топливных элементов, но самым распространенным является топливный элемент с протонообменной мембраной (ПЭМТЭ). Этот тип топливного элемента использует твердую полимерную мембрану в качестве электролита — вещества, которое проводит заряженные частицы между двумя электродами — анодом и катодом.
На аноде происходит окисление водорода — он разделяется на протоны (положительно заряженные частицы) и электроны (отрицательно заряженные частицы). Протоны проходят через мембрану на катод, а электроны движутся по внешней цепи, создавая электрический ток. На катоде происходит восстановление кислорода — он реагирует с протонами и электронами, образуя воду — единственный побочный продукт топливного элемента.
Для того чтобы эти реакции проходили быстро и эффективно, на поверхности электродов наносят катализатор — вещество, которое ускоряет химические процессы, не участвуя в них. Самым активным и стабильным катализатором для топливных элементов является платина — благородный металл, который не подвержен коррозии и отравлению. Однако платина имеет два существенных недостатка: она очень дорогая и редкая. Поэтому ученые ищут способы снизить ее потребление в топливных элементах, не ухудшая их работоспособность.
Один из способов сэкономить на платине — использовать ее в виде наночастиц, равномерно распределенных по поверхности углеродного носителя. Такой подход позволяет увеличить активную поверхность платины и уменьшить ее загрузку на электроде. Однако выбор носителя не менее важен, чем выбор катализатора. Носитель должен обладать высокой электропроводностью, химической стабильностью, хорошей адгезией к платине и мембране, а также способствовать формированию оптимальной геометрии наночастиц.
Один из наиболее перспективных материалов для этой цели — двумерный углеродный материал, состоящий из одноатомного слоя атомов, соединенных в гексагональную решетку. Графен обладает рядом уникальных свойств: он самый тонкий и прочный материал в мире, он имеет высокую тепло- и электропроводность, он гибкий и прозрачный, он химически инертен и биосовместим. Кроме того, графен может изменять свою структуру под воздействием различных факторов, например давления, температуры или электрического поля.
— ректор НИУ «МЭИ» Николай Рогалев.
Математическую модель наноструктурных электрокатализаторов для топливных элементов разработала научная группа кафедры Химии и электрохимической энергетики НИУ «МЭИ» под руководством профессора Сергея Григорьева в рамках реализации программы научных исследований «Приоритет 2030: Технологии будущего» в 2022–2024 гг.
Топливные элементы — устройства, которые преобразуют химическую энергию водорода и кислорода в электрическую энергию без выделения вредных выбросов. Они могут быть использованы для питания автомобилей, домов и портативной электроники. Однако топливные элементы имеют один существенный недостаток — они требуют большого количества платины, дорогого и дефицитного металла, который служит катализатором для химических реакций на электродах.
Ученые из НИУ «МЭИ» нашли способ решить эту проблему с помощью математической модели наноструктурных электрокатализаторов на основе графена — двумерного углеродного материала с уникальными свойствами. Они показали, что платина может быть распределена по поверхности графена таким образом, чтобы увеличить ее эффективность и уменьшить расход. Для того, чтобы разработать математическую модель наноструктурных электрокатализаторов на основе графена, ученые использовали метод функционала плотности (МФП) — один из самых точных и распространенных методов квантовой химии.
Как работает топливный элемент с протонообменной мембраной?
Существует несколько типов топливных элементов, но самым распространенным является топливный элемент с протонообменной мембраной (ПЭМТЭ). Этот тип топливного элемента использует твердую полимерную мембрану в качестве электролита — вещества, которое проводит заряженные частицы между двумя электродами — анодом и катодом.
На аноде происходит окисление водорода — он разделяется на протоны (положительно заряженные частицы) и электроны (отрицательно заряженные частицы). Протоны проходят через мембрану на катод, а электроны движутся по внешней цепи, создавая электрический ток. На катоде происходит восстановление кислорода — он реагирует с протонами и электронами, образуя воду — единственный побочный продукт топливного элемента.
Для того чтобы эти реакции проходили быстро и эффективно, на поверхности электродов наносят катализатор — вещество, которое ускоряет химические процессы, не участвуя в них. Самым активным и стабильным катализатором для топливных элементов является платина — благородный металл, который не подвержен коррозии и отравлению. Однако платина имеет два существенных недостатка: она очень дорогая и редкая. Поэтому ученые ищут способы снизить ее потребление в топливных элементах, не ухудшая их работоспособность.
Графен — идеальный носитель для платины
Один из способов сэкономить на платине — использовать ее в виде наночастиц, равномерно распределенных по поверхности углеродного носителя. Такой подход позволяет увеличить активную поверхность платины и уменьшить ее загрузку на электроде. Однако выбор носителя не менее важен, чем выбор катализатора. Носитель должен обладать высокой электропроводностью, химической стабильностью, хорошей адгезией к платине и мембране, а также способствовать формированию оптимальной геометрии наночастиц.
Один из наиболее перспективных материалов для этой цели — двумерный углеродный материал, состоящий из одноатомного слоя атомов, соединенных в гексагональную решетку. Графен обладает рядом уникальных свойств: он самый тонкий и прочный материал в мире, он имеет высокую тепло- и электропроводность, он гибкий и прозрачный, он химически инертен и биосовместим. Кроме того, графен может изменять свою структуру под воздействием различных факторов, например давления, температуры или электрического поля.
Кафедра Химии и электрохимической энергетики НИУ «МЭИ» продолжает работу по усовершенствованию электрокатализаторов. Сейчас наша основная задача — выпуск полностью отечественных энергетических установок на базе топливных элементов, разработанная модель делает большой шаг вперед к достижению этой цели. Кроме того, результаты работы по данному направлению позволят уменьшить потребление платины и сделать производство более дешевым и доступным
— ректор НИУ «МЭИ» Николай Рогалев.
Математическую модель наноструктурных электрокатализаторов для топливных элементов разработала научная группа кафедры Химии и электрохимической энергетики НИУ «МЭИ» под руководством профессора Сергея Григорьева в рамках реализации программы научных исследований «Приоритет 2030: Технологии будущего» в 2022–2024 гг.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....