Исцелить слепого: наноимплантат способен вернуть зрение
Группа европейских учёных разработала крошечный глазной имплантат, который эффективно преобразует электрические сигналы в зрительные образы в мозге.
Причиной слепоты часто бывают повреждения в глазу. Однако в таких случаях зрительная кора головного мозга остаётся невредимой. Она по-прежнему активна и словно ожидает, чтобы глаз опять начал транслировать на неё образы из внешнего мира.
Установка зрительного имплантата слепым — концепция не новая. Однако с момента появления в 1990-х технология вживления вспомогательных медицинских устройств столкнулась с рядом проблем. Имплантату требуются тысячи электродов для имитации электрических сигналов, которые глаз посылает в мозг для создания визуального образа. Но один электрод представляет только один пиксель информации. Громоздкий размер такого имплантата и угроза чрезмерно травмировать головной мозг затрудняют установку описанных средств.
Мария Асплунд — профессор биоэлектроники Технологического университета Чалмерса в Швеции. Асплунд объяснила, что помимо трудностей с имплантацией громоздкого устройства результат такой борьбы со слепотой оставляет желать лучшего. Даже в случае успеха видимая в итоге картинка далека от воспринимаемой здоровым человеком. Изображение, создаваемое электрическими импульсами, будет похоже на динамические знаки на дорожном табло, со светящимися пятнами на тёмном фоне. Чем больше электродов подключить к такому «табло» в мозге, тем полнее будет изображение.
Группа исследователей из Технологического университета Чалмерса в Швеции, Университета Фрайбурга, Германия, и Нидерландского института неврологии создали исключительно маленький имплантат с электродами размером с отдельный нейрон. Что важно, они могут оставаться неповреждёнными в организме с течением времени. Миниатюрность деталей и долговечность материала — уникальная комбинация, дающая надежду на появление небывалых зрительных имплантатов для слепых.
Согласно исследованию, опубликованному в научном журнале Advanced Healthcare Materials, новый зрительный имплантат отличается от предыдущих моделей аналогичного назначения тем, что он размером с отдельную клетку головного мозга. Скомпоновав тончайшие «нити» электродов рядами друг за другом, исследователи потенциально могут разместить тысячи электродов в одном имплантате. Чем больше электродов помещается в устройство, тем детальнее будет видимое мозгом изображение.
Профессор Мария Асплунд объяснила, что миниатюризация компонентов зрительного имплантата крайне важна. Электроды должны быть достаточно маленькими, чтобы обеспечивать стимуляцию наибольшего количества точек в областях мозга, которые отвечают за зрение.
Ещё одно препятствие, которое исследователи преодолели с помощью нового зрительного имплантата, — это окисление материалов с течением времени. Электроды трудно подолгу поддерживать невредимыми во влажной среде, а коррозия металла в результате протезирования может вызвать целый ряд новых проблем со здоровьем.
Изобретатели создали уникальное сочетание из неподверженных коррозии материалов, расположенных слоями. В их числе — проводящий полимер для преобразования электрических сигналов. Полимер создаёт защитный укрывающий слой, делающий металл ещё более устойчивым к окислению.
Учёные также сосредоточились на ограничении количества металла в зрительном имплантате. Испытанный имплантат получился всего 40 микрометров в ширину и 10 микрометров в толщину, что эквивалентно размеру расщеплённого вдоль волоса. Толщина металлических частей составляла лишь несколько сотен нанометров.
— Мария Асплунд, профессор.
Исследовательница подчеркнула, что до сих пор такое никому не удавалось. А следующим шагом будет создание имплантата с возможностью подсоединить 1000 электродов.
Авторы научного проекта использовали мышей для проверки эффективности нового зрительного имплантата. Грызунов обучали реагировать на электрический импульс в зрительной коре головного мозга. После нескольких сеансов мыши научились реагировать на стимуляцию электродами, и порог, необходимый грызунам для восприятия, был ниже, чем для других имплантатов на металлической основе.
Кроме того, «протез» показал стабильность и долговечность. У каждой из подопытных мышей вживлённый ей имплантат функционировал на протяжении всей естественной продолжительности жизни.
Причиной слепоты часто бывают повреждения в глазу. Однако в таких случаях зрительная кора головного мозга остаётся невредимой. Она по-прежнему активна и словно ожидает, чтобы глаз опять начал транслировать на неё образы из внешнего мира.
Установка зрительного имплантата слепым — концепция не новая. Однако с момента появления в 1990-х технология вживления вспомогательных медицинских устройств столкнулась с рядом проблем. Имплантату требуются тысячи электродов для имитации электрических сигналов, которые глаз посылает в мозг для создания визуального образа. Но один электрод представляет только один пиксель информации. Громоздкий размер такого имплантата и угроза чрезмерно травмировать головной мозг затрудняют установку описанных средств.
Мария Асплунд — профессор биоэлектроники Технологического университета Чалмерса в Швеции. Асплунд объяснила, что помимо трудностей с имплантацией громоздкого устройства результат такой борьбы со слепотой оставляет желать лучшего. Даже в случае успеха видимая в итоге картинка далека от воспринимаемой здоровым человеком. Изображение, создаваемое электрическими импульсами, будет похоже на динамические знаки на дорожном табло, со светящимися пятнами на тёмном фоне. Чем больше электродов подключить к такому «табло» в мозге, тем полнее будет изображение.
Группа исследователей из Технологического университета Чалмерса в Швеции, Университета Фрайбурга, Германия, и Нидерландского института неврологии создали исключительно маленький имплантат с электродами размером с отдельный нейрон. Что важно, они могут оставаться неповреждёнными в организме с течением времени. Миниатюрность деталей и долговечность материала — уникальная комбинация, дающая надежду на появление небывалых зрительных имплантатов для слепых.
Согласно исследованию, опубликованному в научном журнале Advanced Healthcare Materials, новый зрительный имплантат отличается от предыдущих моделей аналогичного назначения тем, что он размером с отдельную клетку головного мозга. Скомпоновав тончайшие «нити» электродов рядами друг за другом, исследователи потенциально могут разместить тысячи электродов в одном имплантате. Чем больше электродов помещается в устройство, тем детальнее будет видимое мозгом изображение.
Профессор Мария Асплунд объяснила, что миниатюризация компонентов зрительного имплантата крайне важна. Электроды должны быть достаточно маленькими, чтобы обеспечивать стимуляцию наибольшего количества точек в областях мозга, которые отвечают за зрение.
Ещё одно препятствие, которое исследователи преодолели с помощью нового зрительного имплантата, — это окисление материалов с течением времени. Электроды трудно подолгу поддерживать невредимыми во влажной среде, а коррозия металла в результате протезирования может вызвать целый ряд новых проблем со здоровьем.
Изобретатели создали уникальное сочетание из неподверженных коррозии материалов, расположенных слоями. В их числе — проводящий полимер для преобразования электрических сигналов. Полимер создаёт защитный укрывающий слой, делающий металл ещё более устойчивым к окислению.
Учёные также сосредоточились на ограничении количества металла в зрительном имплантате. Испытанный имплантат получился всего 40 микрометров в ширину и 10 микрометров в толщину, что эквивалентно размеру расщеплённого вдоль волоса. Толщина металлических частей составляла лишь несколько сотен нанометров.
Теперь мы знаем, что можно изготовить электрод размером с нейрон и поддерживать его эффективную работу в мозге в течение очень длительного времени
— Мария Асплунд, профессор.
Исследовательница подчеркнула, что до сих пор такое никому не удавалось. А следующим шагом будет создание имплантата с возможностью подсоединить 1000 электродов.
Авторы научного проекта использовали мышей для проверки эффективности нового зрительного имплантата. Грызунов обучали реагировать на электрический импульс в зрительной коре головного мозга. После нескольких сеансов мыши научились реагировать на стимуляцию электродами, и порог, необходимый грызунам для восприятия, был ниже, чем для других имплантатов на металлической основе.
Кроме того, «протез» показал стабильность и долговечность. У каждой из подопытных мышей вживлённый ей имплантат функционировал на протяжении всей естественной продолжительности жизни.
- Дмитрий Ладыгин
- chalmers.se; onlinelibrary.wiley.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Он был размером как четыре Эвереста
Ученые считают: жизнь на Земле породил гигантский метеорит....
Швейцарские ученые собираются распылить в атмосфере миллионы тонн алмазов
Остановит ли это глобальное потепление?...
Секретные китайские спутники «Тысячи парусов» — новый кошмар для астрономов
Наблюдать за звездами с Земли становится всё проблематичнее....
Раскрыта правда о «зелёной» Англии
На самом деле, Великобритании угрожает лососевое вымирание....
Почему викинги не сумели колонизировать Северную Америку?
1000-летняя тайна, похоже, все-таки разгадана....
Аномальное древнее кладбище найдено на юге Испании
В 5500-летнем некрополе оказалось много женщин и мало мужчин....
Лазеры раскрыли тайны затерянных городов на Великом шелковом пути
Стало известно, как города-близнецы процветали в суровом высокогорье....
Электрические обои согреют комнату за три минуты
Альтернатива центральному отоплению или очередной фейк?...
Специалисты NASA заявляют, что жизнь на Марсе может... скрываться
И они знают, где ее искать....
И снова наглый плагиат от компании Tesla?
Маск опять в суде. Теперь из-за «Бегущего по лезвию 2049»....
Ученые наконец-то подтвердили, что солнечный максимум уже наступил
Метеозависимым людям придётся несладко....
Доказано на макаках: одиночество в старости сокращает шансы заболеть
Меньше других рядом — меньше угроз....
Добыча криптовалюты: кто-то на этом зарабатывает, а кто-то теряет здоровье
Американские ученые вскрыли неожиданную проблему....
Марк Цукерберг представил «самые передовые очки за всю историю»
Разбираемся: стоит ли девайс свои 10 000 $....
Почти что полёт: найдены следы динозавра, который ускорял свой бег крыльями
Окаменевшие отпечатки позволили рассчитать особенности передвижения....
С помощью лидаров археологи нашли ещё более 6600 сооружений майя
Ещё предстоит обнаружить все крупные города древней цивилизации....