
Исцелить слепого: наноимплантат способен вернуть зрение
Группа европейских учёных разработала крошечный глазной имплантат, который эффективно преобразует электрические сигналы в зрительные образы в мозге.
Причиной слепоты часто бывают повреждения в глазу. Однако в таких случаях зрительная кора головного мозга остаётся невредимой. Она по-прежнему активна и словно ожидает, чтобы глаз опять начал транслировать на неё образы из внешнего мира.
Установка зрительного имплантата слепым — концепция не новая. Однако с момента появления в 1990-х технология вживления вспомогательных медицинских устройств столкнулась с рядом проблем. Имплантату требуются тысячи электродов для имитации электрических сигналов, которые глаз посылает в мозг для создания визуального образа. Но один электрод представляет только один пиксель информации. Громоздкий размер такого имплантата и угроза чрезмерно травмировать головной мозг затрудняют установку описанных средств.
Мария Асплунд — профессор биоэлектроники Технологического университета Чалмерса в Швеции. Асплунд объяснила, что помимо трудностей с имплантацией громоздкого устройства результат такой борьбы со слепотой оставляет желать лучшего. Даже в случае успеха видимая в итоге картинка далека от воспринимаемой здоровым человеком. Изображение, создаваемое электрическими импульсами, будет похоже на динамические знаки на дорожном табло, со светящимися пятнами на тёмном фоне. Чем больше электродов подключить к такому «табло» в мозге, тем полнее будет изображение.
Группа исследователей из Технологического университета Чалмерса в Швеции, Университета Фрайбурга, Германия, и Нидерландского института неврологии создали исключительно маленький имплантат с электродами размером с отдельный нейрон. Что важно, они могут оставаться неповреждёнными в организме с течением времени. Миниатюрность деталей и долговечность материала — уникальная комбинация, дающая надежду на появление небывалых зрительных имплантатов для слепых.
Согласно исследованию, опубликованному в научном журнале Advanced Healthcare Materials, новый зрительный имплантат отличается от предыдущих моделей аналогичного назначения тем, что он размером с отдельную клетку головного мозга. Скомпоновав тончайшие «нити» электродов рядами друг за другом, исследователи потенциально могут разместить тысячи электродов в одном имплантате. Чем больше электродов помещается в устройство, тем детальнее будет видимое мозгом изображение.
Профессор Мария Асплунд объяснила, что миниатюризация компонентов зрительного имплантата крайне важна. Электроды должны быть достаточно маленькими, чтобы обеспечивать стимуляцию наибольшего количества точек в областях мозга, которые отвечают за зрение.
Ещё одно препятствие, которое исследователи преодолели с помощью нового зрительного имплантата, — это окисление материалов с течением времени. Электроды трудно подолгу поддерживать невредимыми во влажной среде, а коррозия металла в результате протезирования может вызвать целый ряд новых проблем со здоровьем.
Изобретатели создали уникальное сочетание из неподверженных коррозии материалов, расположенных слоями. В их числе — проводящий полимер для преобразования электрических сигналов. Полимер создаёт защитный укрывающий слой, делающий металл ещё более устойчивым к окислению.
Учёные также сосредоточились на ограничении количества металла в зрительном имплантате. Испытанный имплантат получился всего 40 микрометров в ширину и 10 микрометров в толщину, что эквивалентно размеру расщеплённого вдоль волоса. Толщина металлических частей составляла лишь несколько сотен нанометров.
— Мария Асплунд, профессор.
Исследовательница подчеркнула, что до сих пор такое никому не удавалось. А следующим шагом будет создание имплантата с возможностью подсоединить 1000 электродов.

Авторы научного проекта использовали мышей для проверки эффективности нового зрительного имплантата. Грызунов обучали реагировать на электрический импульс в зрительной коре головного мозга. После нескольких сеансов мыши научились реагировать на стимуляцию электродами, и порог, необходимый грызунам для восприятия, был ниже, чем для других имплантатов на металлической основе.
Кроме того, «протез» показал стабильность и долговечность. У каждой из подопытных мышей вживлённый ей имплантат функционировал на протяжении всей естественной продолжительности жизни.
Причиной слепоты часто бывают повреждения в глазу. Однако в таких случаях зрительная кора головного мозга остаётся невредимой. Она по-прежнему активна и словно ожидает, чтобы глаз опять начал транслировать на неё образы из внешнего мира.
Установка зрительного имплантата слепым — концепция не новая. Однако с момента появления в 1990-х технология вживления вспомогательных медицинских устройств столкнулась с рядом проблем. Имплантату требуются тысячи электродов для имитации электрических сигналов, которые глаз посылает в мозг для создания визуального образа. Но один электрод представляет только один пиксель информации. Громоздкий размер такого имплантата и угроза чрезмерно травмировать головной мозг затрудняют установку описанных средств.
Мария Асплунд — профессор биоэлектроники Технологического университета Чалмерса в Швеции. Асплунд объяснила, что помимо трудностей с имплантацией громоздкого устройства результат такой борьбы со слепотой оставляет желать лучшего. Даже в случае успеха видимая в итоге картинка далека от воспринимаемой здоровым человеком. Изображение, создаваемое электрическими импульсами, будет похоже на динамические знаки на дорожном табло, со светящимися пятнами на тёмном фоне. Чем больше электродов подключить к такому «табло» в мозге, тем полнее будет изображение.
Группа исследователей из Технологического университета Чалмерса в Швеции, Университета Фрайбурга, Германия, и Нидерландского института неврологии создали исключительно маленький имплантат с электродами размером с отдельный нейрон. Что важно, они могут оставаться неповреждёнными в организме с течением времени. Миниатюрность деталей и долговечность материала — уникальная комбинация, дающая надежду на появление небывалых зрительных имплантатов для слепых.
Согласно исследованию, опубликованному в научном журнале Advanced Healthcare Materials, новый зрительный имплантат отличается от предыдущих моделей аналогичного назначения тем, что он размером с отдельную клетку головного мозга. Скомпоновав тончайшие «нити» электродов рядами друг за другом, исследователи потенциально могут разместить тысячи электродов в одном имплантате. Чем больше электродов помещается в устройство, тем детальнее будет видимое мозгом изображение.
Профессор Мария Асплунд объяснила, что миниатюризация компонентов зрительного имплантата крайне важна. Электроды должны быть достаточно маленькими, чтобы обеспечивать стимуляцию наибольшего количества точек в областях мозга, которые отвечают за зрение.
Ещё одно препятствие, которое исследователи преодолели с помощью нового зрительного имплантата, — это окисление материалов с течением времени. Электроды трудно подолгу поддерживать невредимыми во влажной среде, а коррозия металла в результате протезирования может вызвать целый ряд новых проблем со здоровьем.
Изобретатели создали уникальное сочетание из неподверженных коррозии материалов, расположенных слоями. В их числе — проводящий полимер для преобразования электрических сигналов. Полимер создаёт защитный укрывающий слой, делающий металл ещё более устойчивым к окислению.
Учёные также сосредоточились на ограничении количества металла в зрительном имплантате. Испытанный имплантат получился всего 40 микрометров в ширину и 10 микрометров в толщину, что эквивалентно размеру расщеплённого вдоль волоса. Толщина металлических частей составляла лишь несколько сотен нанометров.
Теперь мы знаем, что можно изготовить электрод размером с нейрон и поддерживать его эффективную работу в мозге в течение очень длительного времени
— Мария Асплунд, профессор.
Исследовательница подчеркнула, что до сих пор такое никому не удавалось. А следующим шагом будет создание имплантата с возможностью подсоединить 1000 электродов.

Авторы научного проекта использовали мышей для проверки эффективности нового зрительного имплантата. Грызунов обучали реагировать на электрический импульс в зрительной коре головного мозга. После нескольких сеансов мыши научились реагировать на стимуляцию электродами, и порог, необходимый грызунам для восприятия, был ниже, чем для других имплантатов на металлической основе.
Кроме того, «протез» показал стабильность и долговечность. У каждой из подопытных мышей вживлённый ей имплантат функционировал на протяжении всей естественной продолжительности жизни.
- Дмитрий Ладыгин
- chalmers.se; onlinelibrary.wiley.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...

Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...