ВСЛУХ

Секретные клетки: нейробиологи открывают новые горизонты в понимании обучаемости

Секретные клетки: нейробиологи открывают новые горизонты в понимании обучаемости
На протяжении десятилетий нейробиологи пытались лучше понять, как люди учатся поведению и гибко адаптируются к новым ситуациям или вызовам реального мира. В то время как люди и другие млекопитающие приобретают новое поведение, нейронные цепи в их мозгу, как известно, реорганизуются вместе со связями между ними.


Исследования показали, что определенные подгруппы тормозных интернейронов могут по-разному способствовать обучению. Однако уникальный вклад этих генетически определенных классов интернейронов все еще плохо изучен.

Исследователи из Медицинской школы Университета Джона Хопкинса и Института неврологии Макса Планка во Флориде провели исследование, изучая роль подгруппы интернейронов, известных как клетки-люстры (ChC), в поддержке надежного и гибкого приобретения нового поведения.

Их статья, опубликованная в журнале Nature Neuroscience, раскрыла адаптивно-тормозящий паттерн взаимосвязей в мозге, который способствует реорганизации корковых цепей во время обучения.

Хорошо известно, что торможение играет решающую роль в формировании зависимых от обучения изменений цепей. Общеизвестно, что основная функция интернейронов заключается в обеспечении ингибирующих тонов в сети. Например, когда интернейроны активируются, общая возбудимость сети снижается, и индукция синаптической пластичности в возбуждающих синапсах становится затруднительной. Однако простое определение функций интернейронов как равномерного торможения является слишком упрощены, и предполагается, что их роли гораздо более специализированы, учитывая большое разнообразие подтипов

 — Хюнгбэ Квон, один из участников исследования.

В своем недавнем исследовании Квон и его коллеги нацелились на ChC, также известные как аксо-аксональные клетки, тип генетически специализированных ГАМКергических интернейронов, обнаруженных во внешнем слое мозга (т.е. в коре). Их цель состояла в том, чтобы раскрыть особую роль этих интернейронов в выполнении кортикальных вычислений, проведя серию экспериментов на живых мышах, которые учились перемещаться по лабиринту, используя трансгенные методы.

В нашем анализе использовалась визуализация кальция in vivo во время задачи пространственной навигации. Мы проанализировали векторный код популяции из разреженного ансамбля настроенных по направлению премоторных нейронов. Функции клеток-люстр во время навигации определялись путем выборочного манипулирования активностью клеток-люстр

 — Хюнгбэ Квон.

Эксперименты и анализы, проведенные исследователями, дали очень интересные результаты. Команда обнаружила, что ChC способствуют уточнению и реорганизации корковых цепей, избирательно подавляя контроль над отдельными пирамидальными нейронами, а не подавляя коллективную активность этих нейронов.

Наши результаты демонстрируют адаптивную логику мотива тормозной цепи, ответственного за организацию распределенных корковых вычислений. Таким образом, клетки-люстры позволяют проводить эффективные кортикальные вычисления специфичным для клетки-мишени образом, что подчеркивает важность разнообразия интернейронов

 — Хюнгбэ Квон.

Недавняя работа Квона и его коллег позволила получить новую ценную информацию об уникальном вкладе генетически детерминированных ChC в адаптивное обучение новому поведению. В будущем это может проложить путь для дальнейших исследований, посвященных ChC или другим подгруппам интернейронов, что может привести к новым захватывающим открытиям.

Теперь мы продолжим использовать системный и молекулярный подходы для всестороннего выяснения многомасштабных механизмов, с помощью которых ChCs формируют мотивы корковых цепей, включая количественную оценку коррелятивной функциональной связи на уровне одного синапса

 — Хюнгбэ Квон.

Автор:

Мы в Мы в Яндекс Дзен
Учёные составили первую карту мозга насекомогоУченые: Чтобы достичь человеческого уровня ИИ должен «почувствовать» мир через роботов