
Лазер и золото: рождение наночуда
Ученые из России, Германии и Испании сделали уникальное открытие. Они показали, как можно одновременно воздействовать на поверхность фемтосекундным лазерным излучением и покрыть ее наночастицами благородных металлов.
Фемтосекундный лазер излучает свет с очень короткими импульсами. Они имеют очень высокую пиковую мощность и способны воздействовать на материалы без теплового повреждения. Фемтосекундный лазер может использоваться для создания наноструктур на поверхности различных материалов, таких как металлы, полимеры, керамика и др.
— младший научный сотрудник кафедры лазерной химии и лазерного материаловедения Евгения Хайруллина.
Наночастицы благородных металлов, таких как золото, серебро, палладий или платина, размером от 1 до 100 нанометров обладают уникальными оптическими, электрическими и каталитическими свойствами, которые зависят от их размера, формы и состава. Они могут усиливать или изменять световые поля на своей поверхности или вблизи нее.
Для создания наноструктурированной поверхности с равномерно распределенными наночастицами благородных металлов ученые использовали соли и комплексы этих металлов, которые наносили на поверхность в виде тонкого слоя. Затем они облучали поверхность фемтосекундным лазером при определенных параметрах. Ключевое отличие данной работы — то, что химикам СПбГУ удалось разработать одностадийный процесс: происходило параллельно лазерное испарение слоя металла и формирование периодических субмикронных структур на поверхности.
Эти структуры имеют размеры менее одного микрометра и называются LIPSS (laser induced periodic surface structure — лазерно-индуцированная периодическая структура поверхности). Они образуются из-за интерференции лазерного излучения с его отражением от поверхности или с плазмонными волнами на наночастицах. LIPSS усиливают локальные световые поля и способствуют дальнейшему образованию и осаждению наночастиц на поверхности.
В результате получается сложная наноструктура, состоящая из LIPSS и наночастиц благородных металлов. Подобная наноструктура имеет ряд преимуществ, таких как повышенная чувствительность к свету, улучшенная электропроводность и каталитическая активность. Эти свойства могут быть использованы для создания высокоэффективных устройств, применяемых в оптике и энергетике, в частности датчиков, накопителей энергии, светоизлучающих и оптоэлектронных устройств.
Фемтосекундный лазер излучает свет с очень короткими импульсами. Они имеют очень высокую пиковую мощность и способны воздействовать на материалы без теплового повреждения. Фемтосекундный лазер может использоваться для создания наноструктур на поверхности различных материалов, таких как металлы, полимеры, керамика и др.
Кратко процесс проходит так: подложка из кремния облучается фемтосекундным лазерным излучением. В этом случае длина одного импульса, порции излучения, составляет несколько фемтосекунд. Для сравнения, например, атом в молекуле совершает одно колебание за время от 10 до 100 фемтосекунд. Облучение таким лазером происходит через раствор, содержащий соединения благородных металлов (серебра, платины, палладия). На последнем этапе такие гибридные наноструктурированные платформы тестируются в качестве индикатора реакции димеризации, а эффективность этого процесса отслеживается in situ — спектрально с помощью метода поверхностно усиленной рамановской спектроскопии, который широко применяется в химии
— младший научный сотрудник кафедры лазерной химии и лазерного материаловедения Евгения Хайруллина.
Наночастицы благородных металлов, таких как золото, серебро, палладий или платина, размером от 1 до 100 нанометров обладают уникальными оптическими, электрическими и каталитическими свойствами, которые зависят от их размера, формы и состава. Они могут усиливать или изменять световые поля на своей поверхности или вблизи нее.
Для создания наноструктурированной поверхности с равномерно распределенными наночастицами благородных металлов ученые использовали соли и комплексы этих металлов, которые наносили на поверхность в виде тонкого слоя. Затем они облучали поверхность фемтосекундным лазером при определенных параметрах. Ключевое отличие данной работы — то, что химикам СПбГУ удалось разработать одностадийный процесс: происходило параллельно лазерное испарение слоя металла и формирование периодических субмикронных структур на поверхности.
Эти структуры имеют размеры менее одного микрометра и называются LIPSS (laser induced periodic surface structure — лазерно-индуцированная периодическая структура поверхности). Они образуются из-за интерференции лазерного излучения с его отражением от поверхности или с плазмонными волнами на наночастицах. LIPSS усиливают локальные световые поля и способствуют дальнейшему образованию и осаждению наночастиц на поверхности.
В результате получается сложная наноструктура, состоящая из LIPSS и наночастиц благородных металлов. Подобная наноструктура имеет ряд преимуществ, таких как повышенная чувствительность к свету, улучшенная электропроводность и каталитическая активность. Эти свойства могут быть использованы для создания высокоэффективных устройств, применяемых в оптике и энергетике, в частности датчиков, накопителей энергии, светоизлучающих и оптоэлектронных устройств.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...