
Исследователи впервые успешно обучили модель машинного обучения в открытом космосе
Впервые в истории ученые обучили модель машинного обучения в открытом космосе, на борту спутника. Это достижение может революционизировать возможности дистанционного зондирования Земли, позволяя проводить мониторинг и принимать решения в режиме реального времени для различных целей.
Данные, собранные спутниками дистанционного зондирования, имеют ключевое значение для многих важных задач, включая аэрофотосъемку, прогнозирование погоды и контроль за вырубкой лесов.
В настоящее время большинство спутников могут только пассивно собирать данные, поскольку они не оборудованы для принятия решений или обнаружения изменений. Вместо этого данные должны передаваться на Землю для обработки, что обычно занимает несколько часов или даже дней. Это ограничивает возможность выявления и реагирования на быстро возникающие события, такие как стихийное бедствие.
Чтобы преодолеть эти ограничения, группа исследователей во главе с аспирантом Витом Ружичкой (отделение информатики Университета Оксфорда) взяла на себя вызов обучить первую программу машинного обучения в открытом космосе. В течение 2022 года команда успешно представила свою идею для миссии «Dashing through the Stars», объявившей открытый конкурс проектных предложений, для осуществления на борту спутника ION SCV004, запущенного в январе 2022 года.
Осенью 2022 года команда передала код программы на спутник, уже находящийся на орбите. Исследователи обучили простую модель обнаруживать изменения облачности по аэроснимкам непосредственно на борту спутника, в отличие от обучения на земле. Модель основывалась на подходе, называемом обучением с небольшим количеством примеров (few-shot learning), позволяющим модели учиться самым важным признакам, на которые нужно обращать внимание, когда у нее есть только несколько образцов для обучения. Основным преимуществом является то, что данные можно сжать в более маленькие представления, делая модель быстрее и эффективнее.
— Вит Ружичка.
Хотя первая часть модели, сжимающая новые изображения, была обучена на земле, вторая часть (которая решала, содержит ли изображение облака или нет) была обучена непосредственно на спутнике.
Обученная модель успешно обнаруживала облачность на спутниковых снимках примерно за десятую часть секунды. Модель способна легко адаптироваться для автоматизации принятия решений для различных целей, от управления в чрезвычайных ситуациях до вырубки лесов. Это открывает новые горизонты для развития спутников дистанционного зондирования Земли и повышения их полезности для человечества.
Данные, собранные спутниками дистанционного зондирования, имеют ключевое значение для многих важных задач, включая аэрофотосъемку, прогнозирование погоды и контроль за вырубкой лесов.
В настоящее время большинство спутников могут только пассивно собирать данные, поскольку они не оборудованы для принятия решений или обнаружения изменений. Вместо этого данные должны передаваться на Землю для обработки, что обычно занимает несколько часов или даже дней. Это ограничивает возможность выявления и реагирования на быстро возникающие события, такие как стихийное бедствие.
Чтобы преодолеть эти ограничения, группа исследователей во главе с аспирантом Витом Ружичкой (отделение информатики Университета Оксфорда) взяла на себя вызов обучить первую программу машинного обучения в открытом космосе. В течение 2022 года команда успешно представила свою идею для миссии «Dashing through the Stars», объявившей открытый конкурс проектных предложений, для осуществления на борту спутника ION SCV004, запущенного в январе 2022 года.
Осенью 2022 года команда передала код программы на спутник, уже находящийся на орбите. Исследователи обучили простую модель обнаруживать изменения облачности по аэроснимкам непосредственно на борту спутника, в отличие от обучения на земле. Модель основывалась на подходе, называемом обучением с небольшим количеством примеров (few-shot learning), позволяющим модели учиться самым важным признакам, на которые нужно обращать внимание, когда у нее есть только несколько образцов для обучения. Основным преимуществом является то, что данные можно сжать в более маленькие представления, делая модель быстрее и эффективнее.
Модель, которую мы разработали, называется RaVAEn. Сначала она сжимает большие файлы изображений в векторы из 128 чисел. Во время фазы обучения модель учится сохранять только информативные значения в этом векторе; те, связанные с изменением, которое она пытается обнаружить (в данном случае — есть ли облако или нет). Это приводит к чрезвычайно быстрому обучению за счет того, что нам требуется обучить только очень маленькую классификационную модель
— Вит Ружичка.
Хотя первая часть модели, сжимающая новые изображения, была обучена на земле, вторая часть (которая решала, содержит ли изображение облака или нет) была обучена непосредственно на спутнике.
Обученная модель успешно обнаруживала облачность на спутниковых снимках примерно за десятую часть секунды. Модель способна легко адаптироваться для автоматизации принятия решений для различных целей, от управления в чрезвычайных ситуациях до вырубки лесов. Это открывает новые горизонты для развития спутников дистанционного зондирования Земли и повышения их полезности для человечества.
- Алексей Павлов
- D-Orbit
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Кролики-франкенштейны с щупальцами на голове «оккупируют» США
Специалисты предупреждают американцев: «Ни в коем случае не прикасайтесь к этим существам!»...

Россиян хотят лишить одной из самых важных и нужных функций на смартфоне
Большая четверка (МТС, Билайн, Мегафон и Теле2) попросили правительство заблокировать звонки в Telegram и WhatsApp...

Австралийский ученый готов доказать на фактах, что разгадал тайну Бермудского треугольника
По словам исследователя, на самом деле все довольно просто, но…...

Российские археологи рассказали, отчего массово гибли жители древнего Херсонеса
Неожиданный ответ нашелся в могилах крымского Города мертвых...

Кости в норвежской пещере пролили свет на жуткую природную катастрофу в Арктике 75 000 лет назад
По словам ученых, уникальный мир был уничтожен практически моментально...

Ученые наконец-то раскрыли тайну происхождения гигантских волн-убийц
Расследование продолжалось долгих 18 лет. Теперь о старых теориях можно навсегда забыть...

В США резко увеличилось количество случаев, когда органы изымали… еще у живых людей
Расследование New York Times показало: эта жуткая практика – теперь официальная политика американского Минздрава...

ЦРУ превратило бордель в Сан-Франциско в лабораторию
За закрытыми дверями проводились эксперименты, которые стирали грань между наукой и безнравственностью...

Ученые подтверждают: Человеческое сознание может перемещаться во времени
А интуиция — воспоминание о будущем. Это доказали секретные эксперименты в ЦРУ...

Галилейское море в Израиле таинственным образом окрасилось в кроваво-красный цвет
Местные жители напуганы, хотя ученые говорят, что поводов для беспокойства нет...

Работу самой мощной АЭС в Европе полностью парализовали… обычные медузы
Эксперты говорят: это очередное подтверждение того, что энергетика ЕС — это колосс на глиняных ногах...