Аккумуляторы электромобилей могут значительно увеличить мощность благодаря новому полимерному покрытию
Ученые из Национальной лаборатории Лоуренса в Беркли (Berkeley Lab) разработали проводящее полимерное покрытие под названием HOS-PFM, которое может обеспечить более долговечные и мощные литий-ионные батареи для электромобилей.
— Гао Лю, старший научный сотрудник отдела энергетических технологий лаборатории Беркли.
Чтобы продемонстрировать превосходные проводящие и адгезионные свойства HOS-PFM, Лю и его команда покрыли алюминиевые и кремниевые электроды HOS-PFM и проверили их работу в установке с литий-ионным аккумулятором.
Кремний и алюминий являются многообещающими электродными материалами для литий-ионных аккумуляторов из-за их потенциально высокой емкости накопления энергии и легкого профиля. Но эти дешевые и распространенные материалы быстро изнашиваются после нескольких циклов зарядки/разрядки.
Токопроводящее связующее HOS-PFM изготовлено из нетоксичного полимера, трансформирующегося на атомарном уровне под действием тепла. Перед нагреванием: при комнатной температуре (20 градусов Цельсия) концевые алкильные цепи (черные волнистые линии) полимерной цепи PFM ограничивают движение ионов лития (красные кружки). После нагревания: при нагревании примерно до 450 градусов Цельсия (842 градуса по Фаренгейту) алкильные концевые цепи плавятся, создавая свободные «липкие» места (синие волнистые линии), которые «цепляются» за кремниевые или алюминиевые материалы на атомном уровне. Затем полимерные цепи PFM самособираются в нити, похожие на спагетти, называемые «иерархически упорядоченными структурами» или HOS. Подобно атомной скоростной автомагистрали, нити HOS-PFM позволяют ионам лития цепляться за электроны (синие кружки). Эти ионы лития и электроны движутся синхронно вдоль выровненных проводящих полимерных цепей.
Во время экспериментов в Advanced Light Source и Molecular Foundry исследователи продемонстрировали, что покрытие HOS-PFM значительно предотвращает деградацию электродов на основе кремния и алюминия во время циклов работы от батареи, обеспечивая при этом высокую емкость батареи более 300 циклов, что является показателем производительности, который находится на одном уровне с современными электродами.
По словам Лю, результаты впечатляют, потому что литий-ионные элементы на основе кремния обычно работают в течение ограниченного количества циклов заряда/разряда и календарного срока службы. Покрытие HOS-PFM позволяет использовать электроды, содержащие до 80% кремния. Такое высокое содержание может увеличить плотность энергии литий-ионных аккумуляторов как минимум на 30%. А поскольку кремний дешевле графита, стандартного материала для электродов сегодня, более дешевые батареи могут значительно увеличить доступность электромобилей начального уровня.
Это достижение открывает новый подход к разработке аккумуляторов для электромобилей, которые являются более доступными и простыми в производстве.
Покрытие HOS-PFM одновременно проводит и электроны, и ионы. Это обеспечивает стабильность работы батареи и высокую скорость зарядки/разрядки, а также увеличивает срок службы батареи. Покрытие также перспективно в качестве геля для аккумуляторов, который может продлить срок службы литий-ионного аккумулятора в среднем с 10 до 15 лет
Покрытие HOS-PFM одновременно проводит и электроны, и ионы. Это обеспечивает стабильность работы батареи и высокую скорость зарядки/разрядки, а также увеличивает срок службы батареи. Покрытие также перспективно в качестве геля для аккумуляторов, который может продлить срок службы литий-ионного аккумулятора в среднем с 10 до 15 лет
— Гао Лю, старший научный сотрудник отдела энергетических технологий лаборатории Беркли.
Чтобы продемонстрировать превосходные проводящие и адгезионные свойства HOS-PFM, Лю и его команда покрыли алюминиевые и кремниевые электроды HOS-PFM и проверили их работу в установке с литий-ионным аккумулятором.
Кремний и алюминий являются многообещающими электродными материалами для литий-ионных аккумуляторов из-за их потенциально высокой емкости накопления энергии и легкого профиля. Но эти дешевые и распространенные материалы быстро изнашиваются после нескольких циклов зарядки/разрядки.
Токопроводящее связующее HOS-PFM изготовлено из нетоксичного полимера, трансформирующегося на атомарном уровне под действием тепла. Перед нагреванием: при комнатной температуре (20 градусов Цельсия) концевые алкильные цепи (черные волнистые линии) полимерной цепи PFM ограничивают движение ионов лития (красные кружки). После нагревания: при нагревании примерно до 450 градусов Цельсия (842 градуса по Фаренгейту) алкильные концевые цепи плавятся, создавая свободные «липкие» места (синие волнистые линии), которые «цепляются» за кремниевые или алюминиевые материалы на атомном уровне. Затем полимерные цепи PFM самособираются в нити, похожие на спагетти, называемые «иерархически упорядоченными структурами» или HOS. Подобно атомной скоростной автомагистрали, нити HOS-PFM позволяют ионам лития цепляться за электроны (синие кружки). Эти ионы лития и электроны движутся синхронно вдоль выровненных проводящих полимерных цепей.
Во время экспериментов в Advanced Light Source и Molecular Foundry исследователи продемонстрировали, что покрытие HOS-PFM значительно предотвращает деградацию электродов на основе кремния и алюминия во время циклов работы от батареи, обеспечивая при этом высокую емкость батареи более 300 циклов, что является показателем производительности, который находится на одном уровне с современными электродами.
По словам Лю, результаты впечатляют, потому что литий-ионные элементы на основе кремния обычно работают в течение ограниченного количества циклов заряда/разряда и календарного срока службы. Покрытие HOS-PFM позволяет использовать электроды, содержащие до 80% кремния. Такое высокое содержание может увеличить плотность энергии литий-ионных аккумуляторов как минимум на 30%. А поскольку кремний дешевле графита, стандартного материала для электродов сегодня, более дешевые батареи могут значительно увеличить доступность электромобилей начального уровня.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Он был размером как четыре Эвереста
Ученые считают: жизнь на Земле породил гигантский метеорит....
Швейцарские ученые собираются распылить в атмосфере миллионы тонн алмазов
Остановит ли это глобальное потепление?...
Секретные китайские спутники «Тысячи парусов» — новый кошмар для астрономов
Наблюдать за звездами с Земли становится всё проблематичнее....
Раскрыта правда о «зелёной» Англии
На самом деле, Великобритании угрожает лососевое вымирание....
Почему викинги не сумели колонизировать Северную Америку?
1000-летняя тайна, похоже, все-таки разгадана....
Аномальное древнее кладбище найдено на юге Испании
В 5500-летнем некрополе оказалось много женщин и мало мужчин....
Лазеры раскрыли тайны затерянных городов на Великом шелковом пути
Стало известно, как города-близнецы процветали в суровом высокогорье....
Электрические обои согреют комнату за три минуты
Альтернатива центральному отоплению или очередной фейк?...
Специалисты NASA заявляют, что жизнь на Марсе может... скрываться
И они знают, где ее искать....
И снова наглый плагиат от компании Tesla?
Маск опять в суде. Теперь из-за «Бегущего по лезвию 2049»....
Ученые наконец-то подтвердили, что солнечный максимум уже наступил
Метеозависимым людям придётся несладко....
Доказано на макаках: одиночество в старости сокращает шансы заболеть
Меньше других рядом — меньше угроз....
Добыча криптовалюты: кто-то на этом зарабатывает, а кто-то теряет здоровье
Американские ученые вскрыли неожиданную проблему....
Марк Цукерберг представил «самые передовые очки за всю историю»
Разбираемся: стоит ли девайс свои 10 000 $....
Почти что полёт: найдены следы динозавра, который ускорял свой бег крыльями
Окаменевшие отпечатки позволили рассчитать особенности передвижения....
С помощью лидаров археологи нашли ещё более 6600 сооружений майя
Ещё предстоит обнаружить все крупные города древней цивилизации....