Роботы и 3D-печать сделали бетон прочнее благодаря особой структуре
Исследователи из Инженерной школы Принстонского университета, США, повысили трещиностойкость бетонных изделий, черпая вдохновение у природы. Они объединили инновационную структуру с технологиями аддитивного производства, то есть с 3D-печатью. А для тщательного контроля за нанесением слоёв стройматериала задействовали промышленных роботов и достижения химии.
Исследователи под руководством Резы Мойни, доцента кафедры гражданского строительства и экологической инженерии, сообщили, что их конструкции повышают устойчивость к растрескиванию на целых 63% по сравнению с бетоном, залитым традиционным способом. Публикацию в научном журнале Nature Communications озаглавили «Прочный бетон с двойным булиганом путём роботизированного аддитивного производства».
Структура Булигана, названная в честь французского математика, не придумана человеком, а лишь описана, по сути, поскольку наблюдается в природе. В материаловедении структура Булигана — это способ, благодаря которому молекулы располагаются в закрученной форме, как в винтовых лестницах. Такое образование помогает создавать прочные гибкие материалы, устойчивые к растрескиванию. Связаны преимущества структуры с тем, что силы в ней распределяются по множеству витков, тем самым помогая материалу сохранять общую целостность.
Учёных вдохновили структуры в виде двойных спиралей, из которых состоит чешуя латимерии коморской. Это живое ископаемое — древний вид рыб Latimeria chalumnae, которых часто называют просто целакантами, согласно биолическому отряду. Мойни сказал, что природа часто использует строение тканей для улучшения свойств материала по двум параметрам, таким как прочность и долговечность.
Чтобы достигнуть подобных механических свойств исследователи предложили конструкцию, при создании которой сырой бетон прядут в трёх измерениях. Для воплощения структуры используется роботизированное аддитивное производство (аналог 3D-принтера) для неплотной укладки прядей-колбасок поверх предыдущих. Например, для печати такого строительного элемента, как балка, инженеры укладывали ярусы материала по принципу двойной спирали, представляющей собой два перпендикулярных слоя, скрученных по высоте. Этот метод и стал ключом к повышению устойчивости материала к возникновению трещин.
Инженеры назвали свой подход «механизмом упрочнения». Технология основана на комбинации приёмов, которые могут предотвращать распространение трещин, блокируя разрушение поверхностей, а также в буквальном смысле сбивать трещины с прямого пути после их образования, объяснил Мойни.
Соавтор научного проекта Шашанк Гупта сказал, что для инновационного формирования архитектурного бетона в качественные балки или колонны требуются роботы с их высоким уровнем автоматизации и точности.
Аддитивное производство, то есть печать, при которой робот накладывает материал прядь за прядью для создания конструкций, позволяет проектировщикам создавать сложную архитектуру, которая невозможна при использовании обычных методов заливки бетона. В лаборатории Мойни исследователи используют больших промышленных роботов, интегрированных с передовой технологией обработки материалов в режиме реального времени. В результате получается создавать полноразмерные и эстетичные строительные элементы.
В рамках исследования инженеры также разработали специальное решение, чтобы не допустить оседания свежего бетона под собственным весом. Решая проблему деформации, исследователи стремились лучше контролировать скорость твердения бетона, чтобы предотвратить незапланированную кривизну.
В лаборатории улучшили двухкомпонентную систему экструзии (подачи материала) из сопла роботизированного принтера, сказал Гупта. Построенная роботизированная система имеет два входа: один для бетона, а другой для химического отвердителя. Оба вещества смешиваются в форсунке непосредственно перед подачей, что позволяет отверждать бетон с точным контролем над структурой, предотвращая расползание. Благодаря точной дозировке отвердителя исследователи добились наилучших результатов, когда по мере роста конструкции не приходится опасаться, что не набравшие прочности нижние слои «поплывут».
Исследователи под руководством Резы Мойни, доцента кафедры гражданского строительства и экологической инженерии, сообщили, что их конструкции повышают устойчивость к растрескиванию на целых 63% по сравнению с бетоном, залитым традиционным способом. Публикацию в научном журнале Nature Communications озаглавили «Прочный бетон с двойным булиганом путём роботизированного аддитивного производства».
Структура Булигана, названная в честь французского математика, не придумана человеком, а лишь описана, по сути, поскольку наблюдается в природе. В материаловедении структура Булигана — это способ, благодаря которому молекулы располагаются в закрученной форме, как в винтовых лестницах. Такое образование помогает создавать прочные гибкие материалы, устойчивые к растрескиванию. Связаны преимущества структуры с тем, что силы в ней распределяются по множеству витков, тем самым помогая материалу сохранять общую целостность.
Учёных вдохновили структуры в виде двойных спиралей, из которых состоит чешуя латимерии коморской. Это живое ископаемое — древний вид рыб Latimeria chalumnae, которых часто называют просто целакантами, согласно биолическому отряду. Мойни сказал, что природа часто использует строение тканей для улучшения свойств материала по двум параметрам, таким как прочность и долговечность.
Чтобы достигнуть подобных механических свойств исследователи предложили конструкцию, при создании которой сырой бетон прядут в трёх измерениях. Для воплощения структуры используется роботизированное аддитивное производство (аналог 3D-принтера) для неплотной укладки прядей-колбасок поверх предыдущих. Например, для печати такого строительного элемента, как балка, инженеры укладывали ярусы материала по принципу двойной спирали, представляющей собой два перпендикулярных слоя, скрученных по высоте. Этот метод и стал ключом к повышению устойчивости материала к возникновению трещин.
Инженеры назвали свой подход «механизмом упрочнения». Технология основана на комбинации приёмов, которые могут предотвращать распространение трещин, блокируя разрушение поверхностей, а также в буквальном смысле сбивать трещины с прямого пути после их образования, объяснил Мойни.
Соавтор научного проекта Шашанк Гупта сказал, что для инновационного формирования архитектурного бетона в качественные балки или колонны требуются роботы с их высоким уровнем автоматизации и точности.
Аддитивное производство, то есть печать, при которой робот накладывает материал прядь за прядью для создания конструкций, позволяет проектировщикам создавать сложную архитектуру, которая невозможна при использовании обычных методов заливки бетона. В лаборатории Мойни исследователи используют больших промышленных роботов, интегрированных с передовой технологией обработки материалов в режиме реального времени. В результате получается создавать полноразмерные и эстетичные строительные элементы.
В рамках исследования инженеры также разработали специальное решение, чтобы не допустить оседания свежего бетона под собственным весом. Решая проблему деформации, исследователи стремились лучше контролировать скорость твердения бетона, чтобы предотвратить незапланированную кривизну.
В лаборатории улучшили двухкомпонентную систему экструзии (подачи материала) из сопла роботизированного принтера, сказал Гупта. Построенная роботизированная система имеет два входа: один для бетона, а другой для химического отвердителя. Оба вещества смешиваются в форсунке непосредственно перед подачей, что позволяет отверждать бетон с точным контролем над структурой, предотвращая расползание. Благодаря точной дозировке отвердителя исследователи добились наилучших результатов, когда по мере роста конструкции не приходится опасаться, что не набравшие прочности нижние слои «поплывут».
- Дмитрий Ладыгин
- scitechdaily.com; wikipedia.org; nature.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....