Зачем учёные запрягли одноклеточные водоросли в крошечный транспорт
Японские исследователи из Токийского университета создали крошечные конструкции, которые перемещаются силой микроскопических водорослей. Водоросли попадают в корзины, прикреплённые к микромашинам, и в этой упряжи продолжают плыть. На заглавной иллюстрации — нарисованное изображение корзинки для наглядности и реальное фото корзины-ловушки.
Были созданы два типа транспортных средств: «ротатор», который вращается колесом, и «скутер», который предназначался для движения по прямой.

Инициировал проект Наото Симидзу. Его с коллегами вдохновила на исследование распространённая подвижная одноклеточная зелёная водоросль хламидомонада Рейнгардта (лат. Chlamydomonas reinhardtii). Диаметр её — около 10 микрометров, а плавает она при помощи двух жгутиков, расположенных спереди. Возле основания жгутиков есть две небольшие сократительные вакуоли, то есть образования, играющие роль органов в одноклеточных организмах. Для передвижения хламидомонады используют свои жгутики, подобно пловцу брассом.
Наото Симидзу и сотоварищи доказали, что эти водоросли можно поймать в ловушку без ущерба для их подвижности. И это представляет собой новый вариант приведения в движение микромашин, которые можно использовать в инженерных или исследовательских целях. Статью о научном достижении опубликовали в журнале Small.

На фото выше — микроскопический «ротатор», в котором водоросли могут перемещаться со скоростью более 100 микрометров в секунду. С четырьмя водорослями в ловушках «вертушка» двигалась со средней скоростью около 20–40 микрометров в секунду.
Сами каркасы микромашин были созданы с использованием технологии 3D-печати, называемой двухфотонной стереолитографией. Соответствующий принтер использует свет для создания микроструктур из пластика. Создатели изделий работали с масштабом в 1 микрометр, что равно 0,001 миллиметра. По словам исследователей, наиболее сложной частью проекта была точность в создании ловушки в форме корзины, чтобы она могла эффективно захватывать и удерживать водоросли, когда они заплывают в неё. Команда экспериментировала с четырьмя вариантами разного размера, прежде чем выбрала наилучший.
«Ротатор», похожий на колесо обозрения, оснащён четырьмя ловушками с одной водорослью в каждой. Размер и форма корзинок позволяют двум маленьким, похожим на плети придаткам водоросли двигаться, перемещая аппарат вперёд.

Участник научного коллектива Харука Ода рассказал, что «ротатор», как и ожидалось, совершал плавное вращательное движение. Однако «скутер» удивил экспериментаторов: вопреки планам, он двигался не в одном направлении, согласно ориентации водорослей, а наблюдались беспорядочные движения — повороты и серия сальто назад.
— Ода, Высшая школа информационных наук и технологий (IST).
По мнению исследователей, главное преимущество разработанных микромашин заключается в том, что ни их каркас, ни водоросли не требуют какой-либо химической модификации. Водорослям также не нужны внешние конструкции, чтобы направлять их в ловушку, что упрощает процесс.
Пока неизвестно, как долго микроскопические «колесницы» продолжат функционировать, а их крошечные «кони» — выживать в «упряжи». Отдельные особи хламидомонада Рейнгардта могут жить около двух дней, размножением производя четыре новые водоросли. Эксперименты проводили несколько часов подряд, в течение которых микромашины сохраняли свой вид и подвижность.
Далее команда учёных хочет усовершенствовать «ротатор», чтобы он вращался быстрее, а также создать новые, более сложные конструкции машин.
Руководитель проекта профессор Седзи Такеучи сказал относительно потенциала изобретения, что микроскопические аппараты, приводимые в движение плавающими зелёными водорослями, могут помочь в биологических и экологических исследованиях.
Были созданы два типа транспортных средств: «ротатор», который вращается колесом, и «скутер», который предназначался для движения по прямой.

Инициировал проект Наото Симидзу. Его с коллегами вдохновила на исследование распространённая подвижная одноклеточная зелёная водоросль хламидомонада Рейнгардта (лат. Chlamydomonas reinhardtii). Диаметр её — около 10 микрометров, а плавает она при помощи двух жгутиков, расположенных спереди. Возле основания жгутиков есть две небольшие сократительные вакуоли, то есть образования, играющие роль органов в одноклеточных организмах. Для передвижения хламидомонады используют свои жгутики, подобно пловцу брассом.
Наото Симидзу и сотоварищи доказали, что эти водоросли можно поймать в ловушку без ущерба для их подвижности. И это представляет собой новый вариант приведения в движение микромашин, которые можно использовать в инженерных или исследовательских целях. Статью о научном достижении опубликовали в журнале Small.

На фото выше — микроскопический «ротатор», в котором водоросли могут перемещаться со скоростью более 100 микрометров в секунду. С четырьмя водорослями в ловушках «вертушка» двигалась со средней скоростью около 20–40 микрометров в секунду.
Сами каркасы микромашин были созданы с использованием технологии 3D-печати, называемой двухфотонной стереолитографией. Соответствующий принтер использует свет для создания микроструктур из пластика. Создатели изделий работали с масштабом в 1 микрометр, что равно 0,001 миллиметра. По словам исследователей, наиболее сложной частью проекта была точность в создании ловушки в форме корзины, чтобы она могла эффективно захватывать и удерживать водоросли, когда они заплывают в неё. Команда экспериментировала с четырьмя вариантами разного размера, прежде чем выбрала наилучший.
«Ротатор», похожий на колесо обозрения, оснащён четырьмя ловушками с одной водорослью в каждой. Размер и форма корзинок позволяют двум маленьким, похожим на плети придаткам водоросли двигаться, перемещая аппарат вперёд.

Участник научного коллектива Харука Ода рассказал, что «ротатор», как и ожидалось, совершал плавное вращательное движение. Однако «скутер» удивил экспериментаторов: вопреки планам, он двигался не в одном направлении, согласно ориентации водорослей, а наблюдались беспорядочные движения — повороты и серия сальто назад.
Это побудило нас продолжить исследование того, как коллективное движение множества водорослей влияет на движение микромашины
— Ода, Высшая школа информационных наук и технологий (IST).
По мнению исследователей, главное преимущество разработанных микромашин заключается в том, что ни их каркас, ни водоросли не требуют какой-либо химической модификации. Водорослям также не нужны внешние конструкции, чтобы направлять их в ловушку, что упрощает процесс.
Пока неизвестно, как долго микроскопические «колесницы» продолжат функционировать, а их крошечные «кони» — выживать в «упряжи». Отдельные особи хламидомонада Рейнгардта могут жить около двух дней, размножением производя четыре новые водоросли. Эксперименты проводили несколько часов подряд, в течение которых микромашины сохраняли свой вид и подвижность.
Далее команда учёных хочет усовершенствовать «ротатор», чтобы он вращался быстрее, а также создать новые, более сложные конструкции машин.
Руководитель проекта профессор Седзи Такеучи сказал относительно потенциала изобретения, что микроскопические аппараты, приводимые в движение плавающими зелёными водорослями, могут помочь в биологических и экологических исследованиях.
- Дмитрий Ладыгин
- onlinelibrary.wiley.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
В России обнаружена рыба, которая 70 лет считалась полностью вымершей
И не единственная такая сенсация в нашей стране за последние годы...
От кабанов до беспилотников: гражданские радары из Китая сделали неожиданную карьеру в российской армии
Почему украинские эксперты жалуются, что россияне ведут войну не по правилам?...
Россия снова первая: в космосе вырастили идеальные кристаллы!
Рассказываем, почему проект «Экран-М» может стать началом новой эры полупроводников, где Россия будет ведущей в мире...
«Инопланетный зонд», который преследует Землю, был сделан… в СССР?
Почему известный гарвардский астроном выдвинул именно эту версию?...
Тайна изумрудной мумии, не дававшей покоя ученым 38 лет, наконец-то разгадана!
Ученые признаются: они не ожидали, что им придется раскрыть самый настоящий химический детектив...
Какие тайны скрывает 40 000-летний... карандаш, найденный в одной из пещер Крыма?
И почему ученые уверены, что эта находка заставляет в корне пересмотреть древнейшую историю человечества?...
20-летнее исследование увенчалось полным успехом: ученые научились запускать самовосстановление... в сердце
Эксперты говорят: пробуждение спящих генов опровергает все медицинские догмы и дает надежду миллионам людей по всему миру...
Автомобиль Tesla снова в центре громкой истории: В него на полном ходу, похоже, врезался... метеорит
Эксперты говорят: если все подтвердится, это будет первый такой случай истории...
В октябре 2025 года ураган Халонг на Аляске унес тысячи древних артефактов в океан
Ученые называют случившееся крупнейшей археологической катастрофой за последнее время. Будет ли восстановлено наследие целого народа?...
Почему ученые по всему миру восприняли в штыки план Илона Маска «затемнить Солнце»?
В ответ миллиардер назвал экспертов паникерами, которые мешают ему помочь человечеству решить одну из главных проблем современности...
Российский астроном открыл 16-ю комету: Почему именно она поразила ученых?
Успеют ли астрофизики раскрыть все тайны gb00810, ведь у них всего несколько недель...