
Зачем учёные запрягли одноклеточные водоросли в крошечный транспорт
Японские исследователи из Токийского университета создали крошечные конструкции, которые перемещаются силой микроскопических водорослей. Водоросли попадают в корзины, прикреплённые к микромашинам, и в этой упряжи продолжают плыть. На заглавной иллюстрации — нарисованное изображение корзинки для наглядности и реальное фото корзины-ловушки.
Были созданы два типа транспортных средств: «ротатор», который вращается колесом, и «скутер», который предназначался для движения по прямой.

Инициировал проект Наото Симидзу. Его с коллегами вдохновила на исследование распространённая подвижная одноклеточная зелёная водоросль хламидомонада Рейнгардта (лат. Chlamydomonas reinhardtii). Диаметр её — около 10 микрометров, а плавает она при помощи двух жгутиков, расположенных спереди. Возле основания жгутиков есть две небольшие сократительные вакуоли, то есть образования, играющие роль органов в одноклеточных организмах. Для передвижения хламидомонады используют свои жгутики, подобно пловцу брассом.
Наото Симидзу и сотоварищи доказали, что эти водоросли можно поймать в ловушку без ущерба для их подвижности. И это представляет собой новый вариант приведения в движение микромашин, которые можно использовать в инженерных или исследовательских целях. Статью о научном достижении опубликовали в журнале Small.

На фото выше — микроскопический «ротатор», в котором водоросли могут перемещаться со скоростью более 100 микрометров в секунду. С четырьмя водорослями в ловушках «вертушка» двигалась со средней скоростью около 20–40 микрометров в секунду.
Сами каркасы микромашин были созданы с использованием технологии 3D-печати, называемой двухфотонной стереолитографией. Соответствующий принтер использует свет для создания микроструктур из пластика. Создатели изделий работали с масштабом в 1 микрометр, что равно 0,001 миллиметра. По словам исследователей, наиболее сложной частью проекта была точность в создании ловушки в форме корзины, чтобы она могла эффективно захватывать и удерживать водоросли, когда они заплывают в неё. Команда экспериментировала с четырьмя вариантами разного размера, прежде чем выбрала наилучший.
«Ротатор», похожий на колесо обозрения, оснащён четырьмя ловушками с одной водорослью в каждой. Размер и форма корзинок позволяют двум маленьким, похожим на плети придаткам водоросли двигаться, перемещая аппарат вперёд.

Участник научного коллектива Харука Ода рассказал, что «ротатор», как и ожидалось, совершал плавное вращательное движение. Однако «скутер» удивил экспериментаторов: вопреки планам, он двигался не в одном направлении, согласно ориентации водорослей, а наблюдались беспорядочные движения — повороты и серия сальто назад.
— Ода, Высшая школа информационных наук и технологий (IST).
По мнению исследователей, главное преимущество разработанных микромашин заключается в том, что ни их каркас, ни водоросли не требуют какой-либо химической модификации. Водорослям также не нужны внешние конструкции, чтобы направлять их в ловушку, что упрощает процесс.
Пока неизвестно, как долго микроскопические «колесницы» продолжат функционировать, а их крошечные «кони» — выживать в «упряжи». Отдельные особи хламидомонада Рейнгардта могут жить около двух дней, размножением производя четыре новые водоросли. Эксперименты проводили несколько часов подряд, в течение которых микромашины сохраняли свой вид и подвижность.
Далее команда учёных хочет усовершенствовать «ротатор», чтобы он вращался быстрее, а также создать новые, более сложные конструкции машин.
Руководитель проекта профессор Седзи Такеучи сказал относительно потенциала изобретения, что микроскопические аппараты, приводимые в движение плавающими зелёными водорослями, могут помочь в биологических и экологических исследованиях.
Были созданы два типа транспортных средств: «ротатор», который вращается колесом, и «скутер», который предназначался для движения по прямой.

Инициировал проект Наото Симидзу. Его с коллегами вдохновила на исследование распространённая подвижная одноклеточная зелёная водоросль хламидомонада Рейнгардта (лат. Chlamydomonas reinhardtii). Диаметр её — около 10 микрометров, а плавает она при помощи двух жгутиков, расположенных спереди. Возле основания жгутиков есть две небольшие сократительные вакуоли, то есть образования, играющие роль органов в одноклеточных организмах. Для передвижения хламидомонады используют свои жгутики, подобно пловцу брассом.
Наото Симидзу и сотоварищи доказали, что эти водоросли можно поймать в ловушку без ущерба для их подвижности. И это представляет собой новый вариант приведения в движение микромашин, которые можно использовать в инженерных или исследовательских целях. Статью о научном достижении опубликовали в журнале Small.

На фото выше — микроскопический «ротатор», в котором водоросли могут перемещаться со скоростью более 100 микрометров в секунду. С четырьмя водорослями в ловушках «вертушка» двигалась со средней скоростью около 20–40 микрометров в секунду.
Сами каркасы микромашин были созданы с использованием технологии 3D-печати, называемой двухфотонной стереолитографией. Соответствующий принтер использует свет для создания микроструктур из пластика. Создатели изделий работали с масштабом в 1 микрометр, что равно 0,001 миллиметра. По словам исследователей, наиболее сложной частью проекта была точность в создании ловушки в форме корзины, чтобы она могла эффективно захватывать и удерживать водоросли, когда они заплывают в неё. Команда экспериментировала с четырьмя вариантами разного размера, прежде чем выбрала наилучший.
«Ротатор», похожий на колесо обозрения, оснащён четырьмя ловушками с одной водорослью в каждой. Размер и форма корзинок позволяют двум маленьким, похожим на плети придаткам водоросли двигаться, перемещая аппарат вперёд.

Участник научного коллектива Харука Ода рассказал, что «ротатор», как и ожидалось, совершал плавное вращательное движение. Однако «скутер» удивил экспериментаторов: вопреки планам, он двигался не в одном направлении, согласно ориентации водорослей, а наблюдались беспорядочные движения — повороты и серия сальто назад.
Это побудило нас продолжить исследование того, как коллективное движение множества водорослей влияет на движение микромашины
— Ода, Высшая школа информационных наук и технологий (IST).
По мнению исследователей, главное преимущество разработанных микромашин заключается в том, что ни их каркас, ни водоросли не требуют какой-либо химической модификации. Водорослям также не нужны внешние конструкции, чтобы направлять их в ловушку, что упрощает процесс.
Пока неизвестно, как долго микроскопические «колесницы» продолжат функционировать, а их крошечные «кони» — выживать в «упряжи». Отдельные особи хламидомонада Рейнгардта могут жить около двух дней, размножением производя четыре новые водоросли. Эксперименты проводили несколько часов подряд, в течение которых микромашины сохраняли свой вид и подвижность.
Далее команда учёных хочет усовершенствовать «ротатор», чтобы он вращался быстрее, а также создать новые, более сложные конструкции машин.
Руководитель проекта профессор Седзи Такеучи сказал относительно потенциала изобретения, что микроскопические аппараты, приводимые в движение плавающими зелёными водорослями, могут помочь в биологических и экологических исследованиях.
- Дмитрий Ладыгин
- onlinelibrary.wiley.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Ученые поражены: у растений есть секретный второй набор корней глубоко под землей
Это не только сенсация в ботанике, это вообще переворот в науке....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

32 удивительных подарка за последние 20 лет: ученые пытаются понять, за что косатки «балуют» людей
Природная доброта? Любопытство? Желание выйти на контакт?...

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

Эксперты обнаружили существ, переживших прямой удар астероида, который уничтожил динозавров
Почему конец света — это вовсе не повод, чтобы вымирать?...

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....