
Зачем учёные запрягли одноклеточные водоросли в крошечный транспорт
Японские исследователи из Токийского университета создали крошечные конструкции, которые перемещаются силой микроскопических водорослей. Водоросли попадают в корзины, прикреплённые к микромашинам, и в этой упряжи продолжают плыть. На заглавной иллюстрации — нарисованное изображение корзинки для наглядности и реальное фото корзины-ловушки.
Были созданы два типа транспортных средств: «ротатор», который вращается колесом, и «скутер», который предназначался для движения по прямой.

Инициировал проект Наото Симидзу. Его с коллегами вдохновила на исследование распространённая подвижная одноклеточная зелёная водоросль хламидомонада Рейнгардта (лат. Chlamydomonas reinhardtii). Диаметр её — около 10 микрометров, а плавает она при помощи двух жгутиков, расположенных спереди. Возле основания жгутиков есть две небольшие сократительные вакуоли, то есть образования, играющие роль органов в одноклеточных организмах. Для передвижения хламидомонады используют свои жгутики, подобно пловцу брассом.
Наото Симидзу и сотоварищи доказали, что эти водоросли можно поймать в ловушку без ущерба для их подвижности. И это представляет собой новый вариант приведения в движение микромашин, которые можно использовать в инженерных или исследовательских целях. Статью о научном достижении опубликовали в журнале Small.

На фото выше — микроскопический «ротатор», в котором водоросли могут перемещаться со скоростью более 100 микрометров в секунду. С четырьмя водорослями в ловушках «вертушка» двигалась со средней скоростью около 20–40 микрометров в секунду.
Сами каркасы микромашин были созданы с использованием технологии 3D-печати, называемой двухфотонной стереолитографией. Соответствующий принтер использует свет для создания микроструктур из пластика. Создатели изделий работали с масштабом в 1 микрометр, что равно 0,001 миллиметра. По словам исследователей, наиболее сложной частью проекта была точность в создании ловушки в форме корзины, чтобы она могла эффективно захватывать и удерживать водоросли, когда они заплывают в неё. Команда экспериментировала с четырьмя вариантами разного размера, прежде чем выбрала наилучший.
«Ротатор», похожий на колесо обозрения, оснащён четырьмя ловушками с одной водорослью в каждой. Размер и форма корзинок позволяют двум маленьким, похожим на плети придаткам водоросли двигаться, перемещая аппарат вперёд.

Участник научного коллектива Харука Ода рассказал, что «ротатор», как и ожидалось, совершал плавное вращательное движение. Однако «скутер» удивил экспериментаторов: вопреки планам, он двигался не в одном направлении, согласно ориентации водорослей, а наблюдались беспорядочные движения — повороты и серия сальто назад.
— Ода, Высшая школа информационных наук и технологий (IST).
По мнению исследователей, главное преимущество разработанных микромашин заключается в том, что ни их каркас, ни водоросли не требуют какой-либо химической модификации. Водорослям также не нужны внешние конструкции, чтобы направлять их в ловушку, что упрощает процесс.
Пока неизвестно, как долго микроскопические «колесницы» продолжат функционировать, а их крошечные «кони» — выживать в «упряжи». Отдельные особи хламидомонада Рейнгардта могут жить около двух дней, размножением производя четыре новые водоросли. Эксперименты проводили несколько часов подряд, в течение которых микромашины сохраняли свой вид и подвижность.
Далее команда учёных хочет усовершенствовать «ротатор», чтобы он вращался быстрее, а также создать новые, более сложные конструкции машин.
Руководитель проекта профессор Седзи Такеучи сказал относительно потенциала изобретения, что микроскопические аппараты, приводимые в движение плавающими зелёными водорослями, могут помочь в биологических и экологических исследованиях.
Были созданы два типа транспортных средств: «ротатор», который вращается колесом, и «скутер», который предназначался для движения по прямой.

Инициировал проект Наото Симидзу. Его с коллегами вдохновила на исследование распространённая подвижная одноклеточная зелёная водоросль хламидомонада Рейнгардта (лат. Chlamydomonas reinhardtii). Диаметр её — около 10 микрометров, а плавает она при помощи двух жгутиков, расположенных спереди. Возле основания жгутиков есть две небольшие сократительные вакуоли, то есть образования, играющие роль органов в одноклеточных организмах. Для передвижения хламидомонады используют свои жгутики, подобно пловцу брассом.
Наото Симидзу и сотоварищи доказали, что эти водоросли можно поймать в ловушку без ущерба для их подвижности. И это представляет собой новый вариант приведения в движение микромашин, которые можно использовать в инженерных или исследовательских целях. Статью о научном достижении опубликовали в журнале Small.

На фото выше — микроскопический «ротатор», в котором водоросли могут перемещаться со скоростью более 100 микрометров в секунду. С четырьмя водорослями в ловушках «вертушка» двигалась со средней скоростью около 20–40 микрометров в секунду.
Сами каркасы микромашин были созданы с использованием технологии 3D-печати, называемой двухфотонной стереолитографией. Соответствующий принтер использует свет для создания микроструктур из пластика. Создатели изделий работали с масштабом в 1 микрометр, что равно 0,001 миллиметра. По словам исследователей, наиболее сложной частью проекта была точность в создании ловушки в форме корзины, чтобы она могла эффективно захватывать и удерживать водоросли, когда они заплывают в неё. Команда экспериментировала с четырьмя вариантами разного размера, прежде чем выбрала наилучший.
«Ротатор», похожий на колесо обозрения, оснащён четырьмя ловушками с одной водорослью в каждой. Размер и форма корзинок позволяют двум маленьким, похожим на плети придаткам водоросли двигаться, перемещая аппарат вперёд.

Участник научного коллектива Харука Ода рассказал, что «ротатор», как и ожидалось, совершал плавное вращательное движение. Однако «скутер» удивил экспериментаторов: вопреки планам, он двигался не в одном направлении, согласно ориентации водорослей, а наблюдались беспорядочные движения — повороты и серия сальто назад.
Это побудило нас продолжить исследование того, как коллективное движение множества водорослей влияет на движение микромашины
— Ода, Высшая школа информационных наук и технологий (IST).
По мнению исследователей, главное преимущество разработанных микромашин заключается в том, что ни их каркас, ни водоросли не требуют какой-либо химической модификации. Водорослям также не нужны внешние конструкции, чтобы направлять их в ловушку, что упрощает процесс.
Пока неизвестно, как долго микроскопические «колесницы» продолжат функционировать, а их крошечные «кони» — выживать в «упряжи». Отдельные особи хламидомонада Рейнгардта могут жить около двух дней, размножением производя четыре новые водоросли. Эксперименты проводили несколько часов подряд, в течение которых микромашины сохраняли свой вид и подвижность.
Далее команда учёных хочет усовершенствовать «ротатор», чтобы он вращался быстрее, а также создать новые, более сложные конструкции машин.
Руководитель проекта профессор Седзи Такеучи сказал относительно потенциала изобретения, что микроскопические аппараты, приводимые в движение плавающими зелёными водорослями, могут помочь в биологических и экологических исследованиях.
- Дмитрий Ладыгин
- onlinelibrary.wiley.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Кто виноват: американские астронавты рассказали правду о 9-месячном «плене» на орбите
Похоже, что американская космическая мечта в глубоком тупике…...

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Тайна болезней на космической станции наконец-то раскрыта!
Ученые говорят: во всем виновата… идеальная уборка на МКС....

На дне Большой голубой дыры обнаружено нечто поистине пугающее
Слои из прошлого пророчат эпоху суперштормов....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Ученые рассказали и показали, как выглядит Антарктида без льда
Высокие горы, глубочайшие каньоны, 58 метров до Апокалипсиса и множество других тайн....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Тайна разлома Сагаинг: почему землетрясение в Мьянме повторило ошибки Гаити и Кашмира?
Сейсмологи предупреждают, что худшее еще может быть впереди....

Отключение этой функции в смартфоне может омолодить мозг… на 10 лет!
Канадские ученые успешно провели удивительный эксперимент....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Две 7000-летние мумии, найденные в Сахаре, принадлежали… к неизвестной расе
Ученые признаются: эта находка значительно меняет историю древней Африки....

Климатологи поражены: древние потопы были гораздо мощнее современных
А изменения климата вообще ни при чем. Но тогда в чем причины?...

Зад-ловушка: причудливое существо из янтаря было за гранью воображения
Задняя часть тела работала… как растение....

Почему ведущие западные ученые требуют раз и навсегда отказаться от перехода на летнее время?
Эксперты говорят: перевод часов может угрожать существованию цивилизации....