Электричество из смертоносной бактерии: ученые впервые создали «франкенштейна» из кишечной палочки
Бактерия E. coli (кишечная палочка), известная своей смертоносностью, может стать источником электричества благодаря «революционному» открытию ученых. Они смогли превратить ее в эффективный электрический микроб, который может работать в разных средах, включая сточные воды. Это открытие может произвести революцию как в управлении отходами, так и в производстве энергии.
Экспертам по биоэлектронике из Федеральной политехнической школы Лозанны (EPFL) удалось сконструировать бактерии кишечной палочки для производства электричества в различных условиях.
Команда использовала процесс, известный как внеклеточный перенос электронов (EET), чтобы сконструировать бактерии и сделать их высокоэффективными электрическими микробами. Это привело к трехкратному увеличению выработки электрического тока по сравнению с традиционными стратегиями. Согласно исследованию, опубликованному в журнале Joule, исследователям впервые удалось создать полный путь EET в E. coli.
— профессор Ардемис Богосян из EPFL.
В отличие от предыдущих методов, биоинженерная кишечная палочка может производить электричество, метаболизируя различные органические субстраты. Объединив компоненты Shewanella oneidensis MR-1, бактерии, известной способностью генерировать электричество, исследователи успешно построили путь, охватывающий внутреннюю и внешнюю мембраны клетки. Сконструированную кишечную палочку даже тестировали в сточных водах пивоваренных заводов, где, в отличие от аналогичных электрических микробов, она процветала. Ученые считают, что это показывает его потенциал для крупномасштабной переработки отходов и производства энергии.
— профессор Ардемис Богосян.
Значение исследования выходит далеко за рамки переработки отходов. Ученые полагают, что сконструированную кишечную палочку можно использовать в микробных топливных элементах, электросинтезе и биосенсорике. Генетическая гибкость бактерии означает, что ее можно адаптировать к конкретной среде и сырью, что делает ее универсальным инструментом для развития устойчивых технологий.
Электрический потенциал с бактерий снимают с помощью специальных устройств, называемых микробными топливными элементами (МТЭ). МТЭ состоят из двух электродов, соединенных внешней электрической цепью, и электролита, который может быть жидким или твердым. Бактерии прикрепляются к одному из электродов, называемому анодом, и окисляют органические вещества, выделяя электроны. Эти электроны переносятся по цепи на другой электрод, называемый катодом, где они восстанавливают кислород или другое окислительное вещество. Таким образом, образуется электрический ток между анодом и катодом. Для увеличения выходной мощности МТЭ можно объединять в стеки или массивы.
— ведущий автор и научный сотрудник Мохаммед Мухиб.
Экспертам по биоэлектронике из Федеральной политехнической школы Лозанны (EPFL) удалось сконструировать бактерии кишечной палочки для производства электричества в различных условиях.
Команда использовала процесс, известный как внеклеточный перенос электронов (EET), чтобы сконструировать бактерии и сделать их высокоэффективными электрическими микробами. Это привело к трехкратному увеличению выработки электрического тока по сравнению с традиционными стратегиями. Согласно исследованию, опубликованному в журнале Joule, исследователям впервые удалось создать полный путь EET в E. coli.
Мы разработали бактерию E. coli, наиболее широко изученный микроб, для выработки электричества. Хотя существуют экзотические микробы, которые естественным образом производят электричество, они могут делать это только в присутствии определенных химических веществ. E. coli может расти в самых разных источниках, что позволило нам производить электроэнергию в самых разных средах, в том числе из сточных вод
— профессор Ардемис Богосян из EPFL.
В отличие от предыдущих методов, биоинженерная кишечная палочка может производить электричество, метаболизируя различные органические субстраты. Объединив компоненты Shewanella oneidensis MR-1, бактерии, известной способностью генерировать электричество, исследователи успешно построили путь, охватывающий внутреннюю и внешнюю мембраны клетки. Сконструированную кишечную палочку даже тестировали в сточных водах пивоваренных заводов, где, в отличие от аналогичных электрических микробов, она процветала. Ученые считают, что это показывает его потенциал для крупномасштабной переработки отходов и производства энергии.
Вместо того чтобы вкладывать энергию в систему для переработки органических отходов, мы производим электричество и одновременно перерабатываем органические отходы, убивая двух зайцев одним выстрелом. Экзотические электрические микробы даже не смогли выжить, тогда как наши биоинженерные электрические бактерии смогли процветать в геометрической прогрессии, питаясь этими отходами
— профессор Ардемис Богосян.
Значение исследования выходит далеко за рамки переработки отходов. Ученые полагают, что сконструированную кишечную палочку можно использовать в микробных топливных элементах, электросинтезе и биосенсорике. Генетическая гибкость бактерии означает, что ее можно адаптировать к конкретной среде и сырью, что делает ее универсальным инструментом для развития устойчивых технологий.
Электрический потенциал с бактерий снимают с помощью специальных устройств, называемых микробными топливными элементами (МТЭ). МТЭ состоят из двух электродов, соединенных внешней электрической цепью, и электролита, который может быть жидким или твердым. Бактерии прикрепляются к одному из электродов, называемому анодом, и окисляют органические вещества, выделяя электроны. Эти электроны переносятся по цепи на другой электрод, называемый катодом, где они восстанавливают кислород или другое окислительное вещество. Таким образом, образуется электрический ток между анодом и катодом. Для увеличения выходной мощности МТЭ можно объединять в стеки или массивы.
Наша работа весьма своевременна, поскольку сконструированные биоэлектрические микробы раздвигают границы во все большем количестве реальных приложений. Мы установили новый рекорд по сравнению с предыдущим уровнем техники, основывавшемся только на частичном пути, и по сравнению с микробом, который использовался в одной из крупнейших работ, недавно опубликованных в этой области. Несмотря на все текущие исследовательские усилия в этой области, мы воодушевлены будущим биоэлектрических бактерий и не можем дождаться, когда мы и другие выдвинем эту технологию на новый уровень
— ведущий автор и научный сотрудник Мохаммед Мухиб.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...