Электричество из смертоносной бактерии: ученые впервые создали «франкенштейна» из кишечной палочки
Бактерия E. coli (кишечная палочка), известная своей смертоносностью, может стать источником электричества благодаря «революционному» открытию ученых. Они смогли превратить ее в эффективный электрический микроб, который может работать в разных средах, включая сточные воды. Это открытие может произвести революцию как в управлении отходами, так и в производстве энергии.
Экспертам по биоэлектронике из Федеральной политехнической школы Лозанны (EPFL) удалось сконструировать бактерии кишечной палочки для производства электричества в различных условиях.
Команда использовала процесс, известный как внеклеточный перенос электронов (EET), чтобы сконструировать бактерии и сделать их высокоэффективными электрическими микробами. Это привело к трехкратному увеличению выработки электрического тока по сравнению с традиционными стратегиями. Согласно исследованию, опубликованному в журнале Joule, исследователям впервые удалось создать полный путь EET в E. coli.
— профессор Ардемис Богосян из EPFL.
В отличие от предыдущих методов, биоинженерная кишечная палочка может производить электричество, метаболизируя различные органические субстраты. Объединив компоненты Shewanella oneidensis MR-1, бактерии, известной способностью генерировать электричество, исследователи успешно построили путь, охватывающий внутреннюю и внешнюю мембраны клетки. Сконструированную кишечную палочку даже тестировали в сточных водах пивоваренных заводов, где, в отличие от аналогичных электрических микробов, она процветала. Ученые считают, что это показывает его потенциал для крупномасштабной переработки отходов и производства энергии.
— профессор Ардемис Богосян.
Значение исследования выходит далеко за рамки переработки отходов. Ученые полагают, что сконструированную кишечную палочку можно использовать в микробных топливных элементах, электросинтезе и биосенсорике. Генетическая гибкость бактерии означает, что ее можно адаптировать к конкретной среде и сырью, что делает ее универсальным инструментом для развития устойчивых технологий.
Электрический потенциал с бактерий снимают с помощью специальных устройств, называемых микробными топливными элементами (МТЭ). МТЭ состоят из двух электродов, соединенных внешней электрической цепью, и электролита, который может быть жидким или твердым. Бактерии прикрепляются к одному из электродов, называемому анодом, и окисляют органические вещества, выделяя электроны. Эти электроны переносятся по цепи на другой электрод, называемый катодом, где они восстанавливают кислород или другое окислительное вещество. Таким образом, образуется электрический ток между анодом и катодом. Для увеличения выходной мощности МТЭ можно объединять в стеки или массивы.
— ведущий автор и научный сотрудник Мохаммед Мухиб.
Экспертам по биоэлектронике из Федеральной политехнической школы Лозанны (EPFL) удалось сконструировать бактерии кишечной палочки для производства электричества в различных условиях.
Команда использовала процесс, известный как внеклеточный перенос электронов (EET), чтобы сконструировать бактерии и сделать их высокоэффективными электрическими микробами. Это привело к трехкратному увеличению выработки электрического тока по сравнению с традиционными стратегиями. Согласно исследованию, опубликованному в журнале Joule, исследователям впервые удалось создать полный путь EET в E. coli.
Мы разработали бактерию E. coli, наиболее широко изученный микроб, для выработки электричества. Хотя существуют экзотические микробы, которые естественным образом производят электричество, они могут делать это только в присутствии определенных химических веществ. E. coli может расти в самых разных источниках, что позволило нам производить электроэнергию в самых разных средах, в том числе из сточных вод
— профессор Ардемис Богосян из EPFL.
В отличие от предыдущих методов, биоинженерная кишечная палочка может производить электричество, метаболизируя различные органические субстраты. Объединив компоненты Shewanella oneidensis MR-1, бактерии, известной способностью генерировать электричество, исследователи успешно построили путь, охватывающий внутреннюю и внешнюю мембраны клетки. Сконструированную кишечную палочку даже тестировали в сточных водах пивоваренных заводов, где, в отличие от аналогичных электрических микробов, она процветала. Ученые считают, что это показывает его потенциал для крупномасштабной переработки отходов и производства энергии.
Вместо того чтобы вкладывать энергию в систему для переработки органических отходов, мы производим электричество и одновременно перерабатываем органические отходы, убивая двух зайцев одним выстрелом. Экзотические электрические микробы даже не смогли выжить, тогда как наши биоинженерные электрические бактерии смогли процветать в геометрической прогрессии, питаясь этими отходами
— профессор Ардемис Богосян.
Значение исследования выходит далеко за рамки переработки отходов. Ученые полагают, что сконструированную кишечную палочку можно использовать в микробных топливных элементах, электросинтезе и биосенсорике. Генетическая гибкость бактерии означает, что ее можно адаптировать к конкретной среде и сырью, что делает ее универсальным инструментом для развития устойчивых технологий.
Электрический потенциал с бактерий снимают с помощью специальных устройств, называемых микробными топливными элементами (МТЭ). МТЭ состоят из двух электродов, соединенных внешней электрической цепью, и электролита, который может быть жидким или твердым. Бактерии прикрепляются к одному из электродов, называемому анодом, и окисляют органические вещества, выделяя электроны. Эти электроны переносятся по цепи на другой электрод, называемый катодом, где они восстанавливают кислород или другое окислительное вещество. Таким образом, образуется электрический ток между анодом и катодом. Для увеличения выходной мощности МТЭ можно объединять в стеки или массивы.
Наша работа весьма своевременна, поскольку сконструированные биоэлектрические микробы раздвигают границы во все большем количестве реальных приложений. Мы установили новый рекорд по сравнению с предыдущим уровнем техники, основывавшемся только на частичном пути, и по сравнению с микробом, который использовался в одной из крупнейших работ, недавно опубликованных в этой области. Несмотря на все текущие исследовательские усилия в этой области, мы воодушевлены будущим биоэлектрических бактерий и не можем дождаться, когда мы и другие выдвинем эту технологию на новый уровень
— ведущий автор и научный сотрудник Мохаммед Мухиб.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
«Титаник» разваливается прямо на глазах
Кто же ускоряет гибель легендарного корабля: люди или природа?...
Starliner Boeing снова в новостях: теперь там что-то жутко стучит и лязгает
NASA придумывает объяснения, а бывший командир МКС говорит, что это не к добру....
Ужас разгадки парадокса Ферми: А где все?!
Почему мы до сих пор не слышим голоса инопланетян?...
Космический корабль BepiColombo невероятно близко подлетел к Меркурию
Свежие снимки рябой планеты удалось сделать благодаря возникшим в полёте неполадкам....
Оказывается, ковыряние в носу очень опасно для здоровья
Ученые сами были в шоке, когда поняли это....
Прорыв или кошмар? Искусственный интеллект стал изменять собственный код
Ученые говорят: ничего страшного. Но так ли это на самом деле?...
Космос вскоре сильно подешевеет
Разительные перемены должны произойти в ближайшие несколько лет....
Азиаты оккупируют Британию: сначала мигранты, теперь желтоногие шершни
Экологи бьют тревогу и массово рассылают методички населению....
Пандемия может повториться: эксперты бьют тревогу
По словам ученых, на зверофермах Китая творятся ужасные вещи....
Новый метод поможет раскрыть секс-преступления во много раз быстрее
Открытие ускорит проверку улик....
Электронный ад на почте
Как бухгалтерская программа разрушила тысячи жизней....
Лишь сегодня стало известно как именно ковка улучшает металл
Учёные пролили свет на универсальные механизмы деформационного упрочнения....
Роботы и 3D-печать сделали бетон прочнее благодаря особой структуре
Имитируя природу, бетон можно уложить так, чтобы повысить прочность на 63%....
Пилотом США может оказаться любой дурак или террорист. Электроника не против
Используя баги, управлять самолетом может кто угодно....
Крупные динозавры предпочитали Южный полюс
Как они выживали в морозы?...
Все мы точно это ели: обычный пищевой краситель делает кожу прозрачной для лазера
Намазанные красителем мыши явили учёным свои внутренние органы....