Кремний — ключ к созданию высокочувствительных сенсоров для медицины и экологии
Группа ученых из МФТИ и Санкт-Петербурга представила новый высокочувствительный сенсор, который использует кремниевые нанонити для анализа состава жидких растворов и паров с кислотами и щелочами. Этот сенсор можно интегрировать в мобильные устройства, что позволяет определять наличие вредных примесей как в промышленных, так и в бытовых условиях. Кроме того, его можно использовать его для создания высокочувствительных датчиков, которые применяются в медицине. Такие датчики помогут обнаруживать и анализировать вредные вещества в организме, что может быть полезно для диагностики и контроля здоровья.
Кремний является наиболее распространенным и технологичным материалом, используемым в современной электронике. Ученые из МФТИ нашли новое применение кремниевым наноструктурам, которые имеют высокую площадь поверхности и зависят от окружающей среды и адсорбированных молекул на их поверхности. Кремниевые нанонити — нанометровые структуры, которые имеют форму тонких проволок или столбиков, выращенных на кремниевой подложке. Они обладают уникальными свойствами, такими как большая площадь поверхности, высокая чувствительность к окружающей среде и возможность модификации химическими или биологическими агентами. Благодаря этому они могут служить основой для разработки различных сенсоров, которые могут регистрировать изменения концентрации различных химических соединений в жидкостях или газах.
— Валерий Кондратьев, младший научный сотрудник лаборатории функциональных наноматериалов МФТИ.
Созданный сенсор предлагает новый селективный метод для качественного и количественного анализа. Он может обнаруживать вещества важные для биологии и медицины даже при их удельной доле менее чем один на миллион.
Сенсор представлен в виде пластинки стекла с кремниевыми нанонитями и золотыми электрическими контактами. Нанонити представляют собой резисторы, сопротивление которых изменяется при изменении состава окружающей среды. Он может использоваться, чтобы экономично обнаруживать кислоты и щелочи, погружая его в жидкость или помещая над поверхностью биологической пробы для анализа кислотных и алкалиновых паров.

Верхнее слева — фото сенсора, где сам сенсор — это круг 7 мм в диаметре. Справа — его оптическое изображение (предоставлено авторами исследования). Справа внизу — концепт работы сенсора, то, каким образом на нити адсорбируются молекулы газов.
Сенсор может быть использован для оценки качества воздуха и контроля доли кислот и вредных солей в сточной воде. Он также может быть перспективным инструментом для предварительного тестирования в медицине, позволяя зафиксировать различные химические соединения, которые могут указывать на сбои в работе организма.
В лаборатории были разработаны три типа сенсоров, которые позволяют оптимизировать производительность. Один из них основан на кремниевых нанопроволоках, другой — на нанопроволоках, обработанных плавиковой кислотой, а третий — на нанопроволоках с наночастицами серебра. В ходе тестирования было выяснено, что чувствительность датчиков сильно зависит от подготовки нитей. Обработка плавиковой кислотой приводит к поверхностному окислению, что повышает плотность областей адсорбции, и эта методика оказывается перспективной для обнаружения химических составляющих, которые изучались в рамках исследования.
Результаты исследования были опубликованы в журнале ACS Applied Nano Materials.
Кремний является наиболее распространенным и технологичным материалом, используемым в современной электронике. Ученые из МФТИ нашли новое применение кремниевым наноструктурам, которые имеют высокую площадь поверхности и зависят от окружающей среды и адсорбированных молекул на их поверхности. Кремниевые нанонити — нанометровые структуры, которые имеют форму тонких проволок или столбиков, выращенных на кремниевой подложке. Они обладают уникальными свойствами, такими как большая площадь поверхности, высокая чувствительность к окружающей среде и возможность модификации химическими или биологическими агентами. Благодаря этому они могут служить основой для разработки различных сенсоров, которые могут регистрировать изменения концентрации различных химических соединений в жидкостях или газах.
В современной микро- и наноэлектронике имеется выраженный тренд к интеграции в классическую кремниевую технологию новых материалов. Однако совсем отойти от кремниевой электроники и фотоники не представляется возможным: все упирается в высокую технологичность и низкую себестоимость кремния и обратную ситуацию для новых материалов. Может показаться, что с кремнием все уже давно известно, однако мы показали, что наноструктуры кремния все еще недостаточно хорошо изучены и имеют потенциал для производства сенсоров. В нашем устройстве используются кремниевые нити длиной 10 микрометров (¼ от толщины человеческого волоса) и диаметром порядка 150 нанометров. Благодаря очень высокому соотношению длины к поперечному сечению нити обладают большой площадью поверхности при крайне небольшом объеме. Как следствие, свойства нанонитей кремния сильно зависят от окружающей среды, различных молекул, которые адсорбируются на поверхность нитей
— Валерий Кондратьев, младший научный сотрудник лаборатории функциональных наноматериалов МФТИ.
Созданный сенсор предлагает новый селективный метод для качественного и количественного анализа. Он может обнаруживать вещества важные для биологии и медицины даже при их удельной доле менее чем один на миллион.
Сенсор представлен в виде пластинки стекла с кремниевыми нанонитями и золотыми электрическими контактами. Нанонити представляют собой резисторы, сопротивление которых изменяется при изменении состава окружающей среды. Он может использоваться, чтобы экономично обнаруживать кислоты и щелочи, погружая его в жидкость или помещая над поверхностью биологической пробы для анализа кислотных и алкалиновых паров.

Верхнее слева — фото сенсора, где сам сенсор — это круг 7 мм в диаметре. Справа — его оптическое изображение (предоставлено авторами исследования). Справа внизу — концепт работы сенсора, то, каким образом на нити адсорбируются молекулы газов.
Сенсор может быть использован для оценки качества воздуха и контроля доли кислот и вредных солей в сточной воде. Он также может быть перспективным инструментом для предварительного тестирования в медицине, позволяя зафиксировать различные химические соединения, которые могут указывать на сбои в работе организма.
В лаборатории были разработаны три типа сенсоров, которые позволяют оптимизировать производительность. Один из них основан на кремниевых нанопроволоках, другой — на нанопроволоках, обработанных плавиковой кислотой, а третий — на нанопроволоках с наночастицами серебра. В ходе тестирования было выяснено, что чувствительность датчиков сильно зависит от подготовки нитей. Обработка плавиковой кислотой приводит к поверхностному окислению, что повышает плотность областей адсорбции, и эта методика оказывается перспективной для обнаружения химических составляющих, которые изучались в рамках исследования.
Результаты исследования были опубликованы в журнале ACS Applied Nano Materials.
- Евгения Бусина
- МФТИ
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...