
Квантовый «инь-янь» показывает запутывание двух фотонов в реальном времени
Ученые использовали первую в своем роде технику для визуализации двух запутанных частиц света в реальном времени, благодаря чему они выглядели как потрясающий квантовый символ «инь-ян».
Новый метод, называемый бифотонной цифровой голографией, использует сверхточную камеру и может быть использован для значительного ускорения будущих квантовых измерений. Исследователи опубликовали свои выводы 14 августа в журнале Nature Photonics.
Квантовая запутанность — странная связь между двумя удаленными друг от друга частицами, которую Альберт Эйнштейн называл «жутким действием на расстоянии» — позволяет двум световым частицам, или фотонам, становиться неразрывно связанными друг с другом, так что изменение одной из них вызывает изменения в другой, независимо от того, насколько далеко они расположены друг от друга.
Чтобы сделать точные предсказания о квантовом объекте, физикам необходимо найти его волновую функцию: описание его состояния, существующее в суперпозиции всех возможных физических значений, которые может принимать фотон. Запутанность усложняет поиск волновой функции двух связанных частиц, поскольку любое измерение одной из них также вызывает мгновенное изменение другой.
Физики обычно разрешают эту проблему с помощью метода, известного как квантовая томография. Беря сложное квантовое состояние и применяя к нему проекцию, они измеряют некоторые свойства, принадлежащие конкретному состоянию, такие как его поляризация или импульс, изолированно от других.
Повторяя эти измерения на нескольких копиях квантового состояния, физики могут создать подобие оригинала на основе фрагментов более низкого измерения — например, реконструируя форму трехмерного объекта по двумерным теням, которые он отбрасывает на окружающие стены.
Этот процесс дает всю нужную информацию, но он также требует множества измерений и выдает множество «запрещенных» состояний, которые не следуют законам физики. Это ставит перед учеными сложную задачу кропотливого отсеивания бессмысленных, нефизических состояний — усилия, которые могут занять часы или даже дни, в зависимости от сложности системы.
Чтобы обойти эту проблему, исследователи использовали голографию для кодирования информации из более высоких измерений в управляемые фрагменты более низких измерений.
Оптические голограммы используют два световых луча для создания трехмерного изображения: один луч попадает на объект и отражается от него, а другой светит на носитель записи. Голограмма формируется из узора интерференции света, или узора, в котором пики и минимумы двух световых волн складываются или нейтрализуют друг друга.
Физики использовали аналогичный метод, чтобы получить изображение состояния запутанного фотона через интерференционную картину, которую они создали с другим известным состоянием. Затем, сделав полученное изображение камерой с наносекундной точностью, исследователи разобрали полученную интерференционную картину, показав потрясающее изображение инь-ян двух запутанных фотонов.
— соавтор исследования Алессио Д’Эррико, научный сотрудник Университета Оттавы в Канаде.
Новый метод, называемый бифотонной цифровой голографией, использует сверхточную камеру и может быть использован для значительного ускорения будущих квантовых измерений. Исследователи опубликовали свои выводы 14 августа в журнале Nature Photonics.
Квантовая запутанность — странная связь между двумя удаленными друг от друга частицами, которую Альберт Эйнштейн называл «жутким действием на расстоянии» — позволяет двум световым частицам, или фотонам, становиться неразрывно связанными друг с другом, так что изменение одной из них вызывает изменения в другой, независимо от того, насколько далеко они расположены друг от друга.
Чтобы сделать точные предсказания о квантовом объекте, физикам необходимо найти его волновую функцию: описание его состояния, существующее в суперпозиции всех возможных физических значений, которые может принимать фотон. Запутанность усложняет поиск волновой функции двух связанных частиц, поскольку любое измерение одной из них также вызывает мгновенное изменение другой.
Физики обычно разрешают эту проблему с помощью метода, известного как квантовая томография. Беря сложное квантовое состояние и применяя к нему проекцию, они измеряют некоторые свойства, принадлежащие конкретному состоянию, такие как его поляризация или импульс, изолированно от других.
Повторяя эти измерения на нескольких копиях квантового состояния, физики могут создать подобие оригинала на основе фрагментов более низкого измерения — например, реконструируя форму трехмерного объекта по двумерным теням, которые он отбрасывает на окружающие стены.
Этот процесс дает всю нужную информацию, но он также требует множества измерений и выдает множество «запрещенных» состояний, которые не следуют законам физики. Это ставит перед учеными сложную задачу кропотливого отсеивания бессмысленных, нефизических состояний — усилия, которые могут занять часы или даже дни, в зависимости от сложности системы.
Чтобы обойти эту проблему, исследователи использовали голографию для кодирования информации из более высоких измерений в управляемые фрагменты более низких измерений.
Оптические голограммы используют два световых луча для создания трехмерного изображения: один луч попадает на объект и отражается от него, а другой светит на носитель записи. Голограмма формируется из узора интерференции света, или узора, в котором пики и минимумы двух световых волн складываются или нейтрализуют друг друга.
Физики использовали аналогичный метод, чтобы получить изображение состояния запутанного фотона через интерференционную картину, которую они создали с другим известным состоянием. Затем, сделав полученное изображение камерой с наносекундной точностью, исследователи разобрали полученную интерференционную картину, показав потрясающее изображение инь-ян двух запутанных фотонов.
Открытый нами метод работает экспоненциально быстрее, чем предыдущие методы, требуя всего несколько минут или секунд вместо дней
— соавтор исследования Алессио Д’Эррико, научный сотрудник Университета Оттавы в Канаде.
- Алексей Павлов
- Nature Photonics
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...

Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...