Sophia: новый способ обучения больших языковых моделей
Команда из Стэнфордского университета создала новый способ предварительного обучения больших языковых моделей — программное обеспечение под названием Sophia, которое работает вдвое быстрее, чем существующие решения.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.
Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Оптимизируя оптимизацию
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.
Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Тестирование и масштабирование
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
Использование Sophia для разработки новой большой языковой модели займет определенное время и достаточно много ресурсов, но так как она является программным обеспечением с открытым исходным кодом, сообщество, безусловно, может брать ее на вооружение
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
- Алексей Павлов
- arXiv preprint server
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Российские ученые «поймали за руку» Илона Маска
Они доказали, что его ракеты пробивают дыры в атмосфере....
«Титаник» разваливается прямо на глазах
Кто же ускоряет гибель легендарного корабля: люди или природа?...
Западная Европа и США готовятся к худшему
Новая угроза ожидается из Латинской Америки....
NASA обнаружило таинственное энергетическое поле вокруг Земли
Оно уникально, и, похоже, благодаря нему на планете… появилась жизнь....
Спасение человечества находится на дне Северного Ледовитого океана
Финские ученые уверены в этом на 100%....
Starliner Boeing снова в новостях: теперь там что-то жутко стучит и лязгает
NASA придумывает объяснения, а бывший командир МКС говорит, что это не к добру....
Космический корабль BepiColombo невероятно близко подлетел к Меркурию
Свежие снимки рябой планеты удалось сделать благодаря возникшим в полёте неполадкам....
Прорыв или кошмар? Искусственный интеллект стал изменять собственный код
Ученые говорят: ничего страшного. Но так ли это на самом деле?...
Форресты Гампы отменяются
Американские ученые «взломали» код аутизма....
Сосуд из найденного в Шотландии клада викингов оказался иранским
Никто не ожидал, что сокровище прибыло из столь отдаленных мест....
Азиаты оккупируют Британию: сначала мигранты, теперь желтоногие шершни
Экологи бьют тревогу и массово рассылают методички населению....
Безглазая смерть чует тьму: как именно грибок превращает мух в зомби-некрофилов
Главное случается ночью....
Новый метод поможет раскрыть секс-преступления во много раз быстрее
Открытие ускорит проверку улик....
Пандемия может повториться: эксперты бьют тревогу
По словам ученых, на зверофермах Китая творятся ужасные вещи....
Оказывается, ковыряние в носу очень опасно для здоровья
Ученые сами были в шоке, когда поняли это....
Роботы и 3D-печать сделали бетон прочнее благодаря особой структуре
Имитируя природу, бетон можно уложить так, чтобы повысить прочность на 63%....