
Sophia: новый способ обучения больших языковых моделей
Команда из Стэнфордского университета создала новый способ предварительного обучения больших языковых моделей — программное обеспечение под названием Sophia, которое работает вдвое быстрее, чем существующие решения.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.

Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Оптимизируя оптимизацию
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.

Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Тестирование и масштабирование
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
Использование Sophia для разработки новой большой языковой модели займет определенное время и достаточно много ресурсов, но так как она является программным обеспечением с открытым исходным кодом, сообщество, безусловно, может брать ее на вооружение
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
- Алексей Павлов
- arXiv preprint server
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна пиратского корабля за 138 миллионов долларов раскрыта у берегов Мадагаскара
Шторм, предательство, тонны золота: Как капитан Стервятник похитил сокровища португальской короны....

Вот уже 17 лет власти Египта запрещают археологам исследовать легендарный Лабиринт
Что скрывает Египет: библиотеку Атлантиды или доказательства переписывания истории?...

Третий гость из бездны: NASA официально подтвердило межзвездное происхождение объекта 3I/ATLAS
Скорость в 245 000 км/ч! Астрофизики говорят, гость «прострелит» Солнечную систему как пуля....

Эксперты бьют тревогу: Таяние ледников разбудит вулканы по всему миру
Цепная реакция извержений прокатится от Антарктиды до Камчатки. Выбросы пепла и CO2 сделают климат невыносимым....

Воскрешение монстра: Colossal возвращает к жизни 3,6-метровую птицу-убийцу моа!
Сможет ли 230-килограммовый гигант из Новой Зеландии выжить среди людей?...

Череп ребенка-«пришельца» из Аргентины оказался вполне земным
Эксперты рассказали в подробностях, как могла появиться «инопланетная» форма головы....

«Богатые тоже плачут»: США открыли «новую эру энергетики» — 800 часов в год без света!
Штаты хвастались ИИ, а электросети «горят» даже от чат-ботов… Россия тем временем запускает термояд....