
Sophia: новый способ обучения больших языковых моделей
Команда из Стэнфордского университета создала новый способ предварительного обучения больших языковых моделей — программное обеспечение под названием Sophia, которое работает вдвое быстрее, чем существующие решения.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.

Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Оптимизируя оптимизацию
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.

Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Тестирование и масштабирование
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
Использование Sophia для разработки новой большой языковой модели займет определенное время и достаточно много ресурсов, но так как она является программным обеспечением с открытым исходным кодом, сообщество, безусловно, может брать ее на вооружение
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
- Алексей Павлов
- arXiv preprint server
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Обнаружен «призрачный» и совершенно неизвестный вид человечества
Эксперты говорят, что ветвь находилась… 40 000 лет в полной изоляции....

Наконец-то раскрыта тайна, на кого охотилась самая большая в истории акула
Надо сказать, что до этого ученые сильно ошибались по поводу меню мегалодона....

На орбите Венеры может скрываться очень серьезная угроза для Земли
Самое опасное, что ее почти невозможно увидеть с поверхности нашей планеты....

Разгадка тайны кругов на полях близка? Исследование 2025 года связывает аномалию со вспышками на Солнце
Геология, плазма, солнечный ветер и НЛО помогли объяснить феномен....

Вулканологи научились понимать тайные сигналы деревьев, предсказывающие извержения
Оказалось, что природный способ работает лучше любых спецприборов....

«Мусор» из глубин Барсучьего логова оказался ценнейшими артефактами таинственного индейского племени
Археологи говорят: в горах Герреро будет еще масса сенсационных открытий....

США грозит «астероидная слепота»: NASA не будет видеть особо опасные объекты
Были надежды на новый телескоп, но их в буквальном смысле убил новый президент....