Sophia: новый способ обучения больших языковых моделей
Команда из Стэнфордского университета создала новый способ предварительного обучения больших языковых моделей — программное обеспечение под названием Sophia, которое работает вдвое быстрее, чем существующие решения.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.

Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
ChatGPT и другие приложения, использующие большие языковые модели (LLM), становятся все более популярными и привлекают много внимания со стороны СМИ. На текущий момент крупные технологические компании сильно преобладают над малыми на рынке LLM, и все это связано с дороговизной предварительного обучения языковых моделей. Стоимость может составлять от 10 миллионов долларов, а в некоторых случаях данная сумма увеличивается в десятки и сотни раз. Соответственно, для малых организаций или академических групп большие языковые модели на данный момент практически недоступны
Чтобы решить эту проблему, ученые решили улучшить существующие методы оптимизации LLM. Результатом стала разработка под названием Sophia, которая сокращает время предварительного обучения вдвое.
Оптимизируя оптимизацию
Чтобы оптимизировать предварительную подготовку LLM, разработчики использовали два метода.
Первый из них, известный как оценка кривизны, уже давно известен, но команда из Стэнфордского университета нашла способ сделать этот подход более эффективным. Суть метода заключается в оптимизации количества шагов, которые требуются для предварительного обучения, а также в правильном распределении нагрузки на каждом из этапов.

Такой шаг кажется очевидным в контексте рассматриваемого процесса, но, как ни странно, от него отказываются большинство компаний, занимающихся разработкой LLM. Дело в том, что оценка кривизны в техническом плане является дорогостоящей и сложной. Обычно оценка производится на каждом шаге оптимизации. Команда из Стэнфордского университета задалась вопросом: а можно ли сделать процесс более эффективным, уменьшив количество обновлений? Разработав оптимизатор Sophia, ученые добились своей цели — кривизна параметров стала оцениваться примерно каждые 10 шагов.
Второй метод команды, называемый отсечением, решает проблему, возникающую при использовании первого — неточную оценку кривизны. При отсечении устанавливается ограничение или пороговое значение для параметров модели. Если параметры превышают этот порог, их сложность считается неприемлемой, и модель не будет обрабатывать их. Таким образом предотвращаются ошибки или проблемы, возникающие из-за сложности, и улучшается эффективность обучения.
Тестирование и масштабирование
Разработчики использовали Sophia для предварительного обучения относительно небольшой модели LLM, используя те же размеры модели и конфигурацию, которые применялись при создании GPT-2.
В дальнейшем команда планирует разработать более крупную модель LLM с использованием Sophia. Ученые также надеются, что Sophia будет применяться и в других областях машинного обучения, таких как модели компьютерного зрения или мультимодальные модели.
Использование Sophia для разработки новой большой языковой модели займет определенное время и достаточно много ресурсов, но так как она является программным обеспечением с открытым исходным кодом, сообщество, безусловно, может брать ее на вооружение
— Гон Лю, аспирант компьютерных наук Стэнфордского университета.
- Алексей Павлов
- arXiv preprint server
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...
Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...
ДНК из ниоткуда: 6000-летние останки в Колумбии ни с кем совпадают по генам. Вообще.
Если у этих людей нет ни предков, ни потомков, то кто они такие?...
В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...
Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...
Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...
Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...
«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...
Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...
2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...
В ближайшие 100 лет Юпитер «выстрелит» в Землю как минимум 342 раза
Российские ученые рассчитали: ближайшее «прицеливание» состоится уже 2031 году. Что вообще нам ожидать?...
Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...
Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...