Медь — новый золотой стандарт для ускорителей электронов
Ускорители электронов — удивительные машины, которые могут создавать мощные лучи света, проникать в тайны атомов и молекул, помогать в изобретении новых материалов и лекарств и многое другое. Но как эти машины работают? Откуда берутся электроны, которые ускоряются до огромных скоростей? Для этого нужны специальные устройства, называемые фотоинжекторами. Они состоят из двух основных частей: лазера и фотокатода. Лазер излучает короткие импульсы света, которые попадают на фотокатод — материал, который может высвобождать электроны под действием света. Эти электроны затем собираются и направляются в ускоритель.
Но не все фотокатоды одинаково хороши. Чтобы получить качественный электронный пучок, нужно, чтобы фотокатод обладал высокой квантовой эффективностью — то есть выдавал много электронов на каждый падающий фотон. Кроме того, требуется, чтобы фотокатод имел низкий темновой ток (не выдавал лишних электронов без освещения). И еще важно, чтобы фотокатод был стабильным и долговечным — то есть не разрушался и не менял своих свойств со временем.
Существует много разных видов фотокатодов, но одним из самых распространенных является медь. Медь — хороший проводник, который легко реагирует на свет. Но у нее есть и недостатки. Квантовая эффективность меди весьма низкая — всего 0,01% для зеленого света. Это значит, что для получения достаточного числа электронов нужно использовать очень мощный лазер, что делает систему дорогой и сложной.
Как повысить квантовую эффективность меди? На этот вопрос нашли ответ ученые из Алтайского государственного технического университета вместе с коллегами из Института ядерной физики СО РАН. Они придумали новый способ модификации поверхности медных фотокатодов с помощью нанесения порошка из медных дендритов — это такие разветвленные кристаллы. Благодаря этому поверхность меди становится шероховатой и пористой, как у оксидных катодов. Это приводит к тому, что электроны легче выходят с поверхности и квантовая эффективность повышается.
Новые медные фотокатоды были протестированы на специальном стенде в Институте ядерной физики СО РАН. Там было показано, что они имеют квантовую эффективность до 0,1% для зеленого света и до 0,5% для ультрафиолетового света. Это в 10-50 раз выше, чем у обычных медных фотокатодов. Кроме того, новые фотокатоды имеют низкий темновой ток (порядка 10 нА) и хорошую стабильность в течение нескольких месяцев.
Новые медные фотокатоды с повышенной квантовой эффективностью будут использоваться в электронных фотопушках, которые в настоящее время создаются в Институте ядерной физики СО РАН для новых ускорительных комплексов. Эти комплексы предназначены для генерации синхротронного и свободноэлектронного лазерного излучения, а также для проведения различных экспериментов в области ядерной и плазменной физики, материаловедения, биологии и медицины. Новые фотокатоды позволят получать более качественные электронные пучки с меньшими затратами энергии и ресурсов.
Благодаря новой технологии модификации поверхности медь становится более эффективным материалом для фотокатодов, которые играют важную роль в современной науке и технике.
Но не все фотокатоды одинаково хороши. Чтобы получить качественный электронный пучок, нужно, чтобы фотокатод обладал высокой квантовой эффективностью — то есть выдавал много электронов на каждый падающий фотон. Кроме того, требуется, чтобы фотокатод имел низкий темновой ток (не выдавал лишних электронов без освещения). И еще важно, чтобы фотокатод был стабильным и долговечным — то есть не разрушался и не менял своих свойств со временем.
Существует много разных видов фотокатодов, но одним из самых распространенных является медь. Медь — хороший проводник, который легко реагирует на свет. Но у нее есть и недостатки. Квантовая эффективность меди весьма низкая — всего 0,01% для зеленого света. Это значит, что для получения достаточного числа электронов нужно использовать очень мощный лазер, что делает систему дорогой и сложной.
Как повысить квантовую эффективность меди? На этот вопрос нашли ответ ученые из Алтайского государственного технического университета вместе с коллегами из Института ядерной физики СО РАН. Они придумали новый способ модификации поверхности медных фотокатодов с помощью нанесения порошка из медных дендритов — это такие разветвленные кристаллы. Благодаря этому поверхность меди становится шероховатой и пористой, как у оксидных катодов. Это приводит к тому, что электроны легче выходят с поверхности и квантовая эффективность повышается.
Новые медные фотокатоды были протестированы на специальном стенде в Институте ядерной физики СО РАН. Там было показано, что они имеют квантовую эффективность до 0,1% для зеленого света и до 0,5% для ультрафиолетового света. Это в 10-50 раз выше, чем у обычных медных фотокатодов. Кроме того, новые фотокатоды имеют низкий темновой ток (порядка 10 нА) и хорошую стабильность в течение нескольких месяцев.
Новые медные фотокатоды с повышенной квантовой эффективностью будут использоваться в электронных фотопушках, которые в настоящее время создаются в Институте ядерной физики СО РАН для новых ускорительных комплексов. Эти комплексы предназначены для генерации синхротронного и свободноэлектронного лазерного излучения, а также для проведения различных экспериментов в области ядерной и плазменной физики, материаловедения, биологии и медицины. Новые фотокатоды позволят получать более качественные электронные пучки с меньшими затратами энергии и ресурсов.
Благодаря новой технологии модификации поверхности медь становится более эффективным материалом для фотокатодов, которые играют важную роль в современной науке и технике.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....