Имплантаты из водорослей помогут лечить эпилептиков
Мозговые имплантаты, частично изготовленные из водорослей, успешно приживутся в ткани мозга у пациентов с эпилепсией, утверждают учёные из Шотландии. Глубокую стимуляцию мозга ранее использовали для лечения болезни Паркинсона и обсессивно-компульсивного расстройства. Теперь исследователи хотят адаптировать аналогичные нейронные зонды для лечения эпилепсии, особенно устойчивой к лекарствам.
Биоинженеры из Университета Глазго изучают растворимые вещества, которые помогли бы вводить гибкие имплантаты в мозг для регулирования эпилепсии, возникающей в височных долях.
Современные зонды для глубокой стимуляции мозга делают из кремния, и он часто вызывает рубцевание вокруг места вживления. Это связано с тем, что жёсткость инородного материала не соответствует более мягкой ткани мозга. Так что новое решение нуждается в гибких зондах из таких материалов, которые лучше приживутся. Однако чрезмерная мягкость не должна увеличить риск изгиба или поломки.
Учёные проверили эффективность сахарозы, мальтозы (солодового сахара), фиброина шёлка и альгината в качестве временных средств придания жёсткости. Фиброин — это белок, из которого плетут коконы гусеницы шелкопрядов, то есть натуральное вещество. Альгиновая кислота — это полисахарид, вязкое вещество, которое получают из водорослей, в том числе из морской капусты. Перечисленные вещества позволяют гибким зондам достигать своих целей в мозге без опасных изгибов, а затем растворяются после операции. Биоинженеры также измерили, сколько времени потребовалось этим материалам для рассасывания.
Исследователи затем сосредоточились на фиброине шёлка и альгинатных материалах. Биоинженеры выбрали их потому, что они достаточно долго держат форму перед тем, как рассосаться. А хирургам необходимо время, чтобы успеть имплантировать устройство в мозг.
— Мария Сересо-Санчес из Инженерной школы Джеймса Ватта, ведущий автор научной работы.
Причём альгинат из водорослей впервые исследовали в качестве «временной арматуры». Исследователи нанесли покрытия на гибкие зонды и протестировали их на имитации мозга. Для этого взяли гель из агарозы — это полисахарид из красных водорослей. Гель по консистенции имитировал реальную ткань мозга.
Фиброин оказался наиболее эффективным, поскольку при его использовании как раз возникает оптимальное усилие до 75,99 миллиньютона.
Материалы из фиброина шёлка дополнительно протестировали на образцах мозга ягнёнка и крысы, чтобы собрать дополнительные данные об их эффективности в условиях, сходных с человеческими.
На второй иллюстрации — схема гибкого нейронного зонда, имплантируемого в мозг крысы. Система, кроме зонда, включает разъём ZIF (от англ. Zero Insertion Force — введение с нулевым усилием) и гибкую печатную плату. Гибкий зонд прокрыт растворимым средством для введения.
Проделанная работа — частью проекта Hybrid Enhanced системы регенеративной медицины с бюджетом 8,6 млн долларов, который запустили в 2019 году. В исследованиях участвуют учёные из семи стран Европы.
Биоинженеры из Университета Глазго изучают растворимые вещества, которые помогли бы вводить гибкие имплантаты в мозг для регулирования эпилепсии, возникающей в височных долях.
Современные зонды для глубокой стимуляции мозга делают из кремния, и он часто вызывает рубцевание вокруг места вживления. Это связано с тем, что жёсткость инородного материала не соответствует более мягкой ткани мозга. Так что новое решение нуждается в гибких зондах из таких материалов, которые лучше приживутся. Однако чрезмерная мягкость не должна увеличить риск изгиба или поломки.
Учёные проверили эффективность сахарозы, мальтозы (солодового сахара), фиброина шёлка и альгината в качестве временных средств придания жёсткости. Фиброин — это белок, из которого плетут коконы гусеницы шелкопрядов, то есть натуральное вещество. Альгиновая кислота — это полисахарид, вязкое вещество, которое получают из водорослей, в том числе из морской капусты. Перечисленные вещества позволяют гибким зондам достигать своих целей в мозге без опасных изгибов, а затем растворяются после операции. Биоинженеры также измерили, сколько времени потребовалось этим материалам для рассасывания.
Исследователи затем сосредоточились на фиброине шёлка и альгинатных материалах. Биоинженеры выбрали их потому, что они достаточно долго держат форму перед тем, как рассосаться. А хирургам необходимо время, чтобы успеть имплантировать устройство в мозг.
Эксперименты показали многообещающие результаты для создания гибких нейронных зондов, чтобы без побочных последствий направлять их к отделам мозга. Это важный шаг вперед, и мы продолжаем изучать потенциал этих материалов для использования в процедурах нейронной имплантации
— Мария Сересо-Санчес из Инженерной школы Джеймса Ватта, ведущий автор научной работы.
Причём альгинат из водорослей впервые исследовали в качестве «временной арматуры». Исследователи нанесли покрытия на гибкие зонды и протестировали их на имитации мозга. Для этого взяли гель из агарозы — это полисахарид из красных водорослей. Гель по консистенции имитировал реальную ткань мозга.
Фиброин оказался наиболее эффективным, поскольку при его использовании как раз возникает оптимальное усилие до 75,99 миллиньютона.
Материалы из фиброина шёлка дополнительно протестировали на образцах мозга ягнёнка и крысы, чтобы собрать дополнительные данные об их эффективности в условиях, сходных с человеческими.
На второй иллюстрации — схема гибкого нейронного зонда, имплантируемого в мозг крысы. Система, кроме зонда, включает разъём ZIF (от англ. Zero Insertion Force — введение с нулевым усилием) и гибкую печатную плату. Гибкий зонд прокрыт растворимым средством для введения.
Проделанная работа — частью проекта Hybrid Enhanced системы регенеративной медицины с бюджетом 8,6 млн долларов, который запустили в 2019 году. В исследованиях участвуют учёные из семи стран Европы.
- Дмитрий Ладыгин
- pixabay.com; studyfinds.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....