Имплантаты из водорослей помогут лечить эпилептиков
Мозговые имплантаты, частично изготовленные из водорослей, успешно приживутся в ткани мозга у пациентов с эпилепсией, утверждают учёные из Шотландии. Глубокую стимуляцию мозга ранее использовали для лечения болезни Паркинсона и обсессивно-компульсивного расстройства. Теперь исследователи хотят адаптировать аналогичные нейронные зонды для лечения эпилепсии, особенно устойчивой к лекарствам.
Биоинженеры из Университета Глазго изучают растворимые вещества, которые помогли бы вводить гибкие имплантаты в мозг для регулирования эпилепсии, возникающей в височных долях.
Современные зонды для глубокой стимуляции мозга делают из кремния, и он часто вызывает рубцевание вокруг места вживления. Это связано с тем, что жёсткость инородного материала не соответствует более мягкой ткани мозга. Так что новое решение нуждается в гибких зондах из таких материалов, которые лучше приживутся. Однако чрезмерная мягкость не должна увеличить риск изгиба или поломки.
Учёные проверили эффективность сахарозы, мальтозы (солодового сахара), фиброина шёлка и альгината в качестве временных средств придания жёсткости. Фиброин — это белок, из которого плетут коконы гусеницы шелкопрядов, то есть натуральное вещество. Альгиновая кислота — это полисахарид, вязкое вещество, которое получают из водорослей, в том числе из морской капусты. Перечисленные вещества позволяют гибким зондам достигать своих целей в мозге без опасных изгибов, а затем растворяются после операции. Биоинженеры также измерили, сколько времени потребовалось этим материалам для рассасывания.
Исследователи затем сосредоточились на фиброине шёлка и альгинатных материалах. Биоинженеры выбрали их потому, что они достаточно долго держат форму перед тем, как рассосаться. А хирургам необходимо время, чтобы успеть имплантировать устройство в мозг.
— Мария Сересо-Санчес из Инженерной школы Джеймса Ватта, ведущий автор научной работы.
Причём альгинат из водорослей впервые исследовали в качестве «временной арматуры». Исследователи нанесли покрытия на гибкие зонды и протестировали их на имитации мозга. Для этого взяли гель из агарозы — это полисахарид из красных водорослей. Гель по консистенции имитировал реальную ткань мозга.
Фиброин оказался наиболее эффективным, поскольку при его использовании как раз возникает оптимальное усилие до 75,99 миллиньютона.
Материалы из фиброина шёлка дополнительно протестировали на образцах мозга ягнёнка и крысы, чтобы собрать дополнительные данные об их эффективности в условиях, сходных с человеческими.
На второй иллюстрации — схема гибкого нейронного зонда, имплантируемого в мозг крысы. Система, кроме зонда, включает разъём ZIF (от англ. Zero Insertion Force — введение с нулевым усилием) и гибкую печатную плату. Гибкий зонд прокрыт растворимым средством для введения.

Проделанная работа — частью проекта Hybrid Enhanced системы регенеративной медицины с бюджетом 8,6 млн долларов, который запустили в 2019 году. В исследованиях участвуют учёные из семи стран Европы.
Биоинженеры из Университета Глазго изучают растворимые вещества, которые помогли бы вводить гибкие имплантаты в мозг для регулирования эпилепсии, возникающей в височных долях.
Современные зонды для глубокой стимуляции мозга делают из кремния, и он часто вызывает рубцевание вокруг места вживления. Это связано с тем, что жёсткость инородного материала не соответствует более мягкой ткани мозга. Так что новое решение нуждается в гибких зондах из таких материалов, которые лучше приживутся. Однако чрезмерная мягкость не должна увеличить риск изгиба или поломки.
Учёные проверили эффективность сахарозы, мальтозы (солодового сахара), фиброина шёлка и альгината в качестве временных средств придания жёсткости. Фиброин — это белок, из которого плетут коконы гусеницы шелкопрядов, то есть натуральное вещество. Альгиновая кислота — это полисахарид, вязкое вещество, которое получают из водорослей, в том числе из морской капусты. Перечисленные вещества позволяют гибким зондам достигать своих целей в мозге без опасных изгибов, а затем растворяются после операции. Биоинженеры также измерили, сколько времени потребовалось этим материалам для рассасывания.
Исследователи затем сосредоточились на фиброине шёлка и альгинатных материалах. Биоинженеры выбрали их потому, что они достаточно долго держат форму перед тем, как рассосаться. А хирургам необходимо время, чтобы успеть имплантировать устройство в мозг.
Эксперименты показали многообещающие результаты для создания гибких нейронных зондов, чтобы без побочных последствий направлять их к отделам мозга. Это важный шаг вперед, и мы продолжаем изучать потенциал этих материалов для использования в процедурах нейронной имплантации
— Мария Сересо-Санчес из Инженерной школы Джеймса Ватта, ведущий автор научной работы.
Причём альгинат из водорослей впервые исследовали в качестве «временной арматуры». Исследователи нанесли покрытия на гибкие зонды и протестировали их на имитации мозга. Для этого взяли гель из агарозы — это полисахарид из красных водорослей. Гель по консистенции имитировал реальную ткань мозга.
Фиброин оказался наиболее эффективным, поскольку при его использовании как раз возникает оптимальное усилие до 75,99 миллиньютона.
Материалы из фиброина шёлка дополнительно протестировали на образцах мозга ягнёнка и крысы, чтобы собрать дополнительные данные об их эффективности в условиях, сходных с человеческими.
На второй иллюстрации — схема гибкого нейронного зонда, имплантируемого в мозг крысы. Система, кроме зонда, включает разъём ZIF (от англ. Zero Insertion Force — введение с нулевым усилием) и гибкую печатную плату. Гибкий зонд прокрыт растворимым средством для введения.

Проделанная работа — частью проекта Hybrid Enhanced системы регенеративной медицины с бюджетом 8,6 млн долларов, который запустили в 2019 году. В исследованиях участвуют учёные из семи стран Европы.
- Дмитрий Ладыгин
- pixabay.com; studyfinds.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Активность нечеловеческого разума вблизи ядерных объектов США, СССР и Великобритании впервые получила научные доказательства
Критики не смогли опровергнуть работу шведских ученых о странных искусственных аномалиях на орбите...
ДНК из ниоткуда: 6000-летние останки в Колумбии ни с кем совпадают по генам. Вообще.
Если у этих людей нет ни предков, ни потомков, то кто они такие?...
Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...
Загадочный взрыв над Москвой: зачем NASA срочно удалила все данные об объекте 2025 US6?
И почему эксперты говорят, что мы никогда не узнаем правды?...
Ученые наконец-то взломали астрономический код цивилизации майя
700 лет точных предсказаний, 145 солнечных затмений: гениальный способ из древности отлично работает до сих пор...
«Парящие» берлоги: Как треугольные дома помогут России удержать Арктику
Кто победит? Глобальное изменение климата или новые технологии?...
Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...
Ученые говорят: вся жизнь подчиняется одному секретному коду
Но почему это древнее ископаемое отказалось следовать ему?...
В ближайшие 100 лет Юпитер «выстрелит» в Землю как минимум 342 раза
Российские ученые рассчитали: ближайшее «прицеливание» состоится уже 2031 году. Что вообще нам ожидать?...
Затонувшие корабли с сокровищами у берегов Китая открывают поразительные факты о Великом морском шелковом пути
Да, это лонгрид! Но после его прочтения ваш взгляд на историю Китая изменится самым коренным образом...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...
Эксперимент показал, что на самом деле творится под марсианскими дюнами каждую весну
Оказалось, что с наступлением тепла на Красной планете активизируются... ледяные «кроты»...
Тающий лед Антарктиды прячет от нас глубинную «бомбу» замедленного действия
Неожиданный климатический парадокс: малая беда хранит человечество от большой. Но это ненадолго...