Электром: следующий великий рубеж для биомедицинских технологий
Биоэлектричество — фундаментальный способ связи в теле человека. Когда биоэлектрические сигналы проходят через нервную систему, они несут жизненно важные сообщения, которые контролируют работу органов. С точки зрения медицины такие сигналы богаты информацией, которая может быть записана и включена в нейронную цифровую терапию, где ими можно манипулировать для получения терапевтических эффектов.
Электромедицина использует естественные сигнальные пути в нервной системе, достигая терапевтических эффектов с помощью имплантированных устройств, которые стимулируют целевые нервы. Обладая многочисленными путями и направленными эффектами, нервная система обеспечивает естественный путь терапевтических вмешательств для противодействия дисфункциям в организме и имеет реальные перспективы в качестве альтернативной или дополнительной терапии состояний, которые не поддаются адекватному контролю с помощью традиционных фармацевтических препаратов.

Биоэлектричество также играет важную роль в регуляции клеточного поведения и формирования эмбриогенеза, регенерации и подавления рака. В современной медицине измерение биоэлектрических потенциалов уже стало распространенной практикой для диагностики. Электрические эффекты, возникающие в активных клетках сердца и мозга, например, обычно контролируются и анализируются для диагностических целей.
Биоэлектрические потенциалы идентичны потенциалам, производимым устройствами, такими как, например, батареи или генераторы. В большинстве случаев, однако, биоэлектрический ток состоит из потока ионов (т.е. электрически заряженных атомов или молекул), тогда как электрический ток, используемый для освещения, связи или питания, представляет собой движение электронов.
Если два раствора с разной концентрацией иона разделены мембраной, которая блокирует поток ионов между ними, дисбаланс концентрации создает разность электрического потенциала между растворами.
В результате этого образуется разность потенциалов между внутренней и внешней сторонами мембраны, называемая покоящимся потенциалом. Покоящийся потенциал может быть изменен различными факторами, такими как электрические сигналы от других клеток, гормоны, нейромедиаторы, температура и т. д.
Если покоящийся потенциал достигает определенного порога, клетка может сгенерировать более сильный электрический импульс, называемый действующим потенциалом. Действующий потенциал представляет собой быстрое и кратковременное изменение напряжения между внутренней и внешней сторонами мембраны, вызванное открытием и закрытием ионных каналов. Действующий потенциал может распространяться по мембране и передаваться другим клеткам через специальные структуры, называемые синапсами.
Нейротерапевтические подходы с применением биоэлектричества уже клинически применяются при различных неврологических, сердечно-сосудистых и воспалительных состояниях. Они нацелены либо на центральную нервную систему, головной мозг и позвоночник, либо на периферическую нервную систему, а также нервы, которые сообщаются между мозгом и органами.
Также среди технологий, которые активно задействуют научные знания о биоэлектричестве весомую долю занимают нейроимпланты. Устройства вживляют в нервную систему человека для восстановления или улучшения некоторых функций.

Технология нейроимплантирования используется в медицине для лечения разных заболеваний, таких как болезнь Паркинсона, эпилепсия, слепота, глухота и паралич. Современные нейроимпланты также могут быть использованы для усиления когнитивных способностей или создания интерфейсов между мозгом и компьютером.
Среди более распространенных электромедицинских методов наблюдения присутствуют электрокардиография, более известная большинству в сокращенном варианте как ЭКГ. Метод измерения электрической активности сердца с помощью электродов, прикрепленных к коже позволяет медикам измерить частоту и ритм сердечных сокращений, а также выявить наличие аномалий, таких как аритмии, инфаркты, блокады и другие.
Схожий метод применяется и при электроэнцефалографии (ЭЭГ), когда электрическую активность мозга измеряют при помощи электродов, прикрепленных к голове. ЭЭГ позволяет медикам увидеть уровень активности мозга, проанализировать его состояние в моменты сна и бодрствования, а в диагностике способен определять наличие судорог, опухолей, инсультов у пациента.
Также стоит вспомнить о неразрывно связанных методах электромиографии (ЭМГ) и электростимуляции. При ЭМГ электрическая активность мышц измеряется при помощи электродов, вставленных в мышцы или прикрепленных к коже. ЭМГ может показать силу и тонус мышц, наличие повреждений нервов или мышц, заболеваний нейромышечного соединения и других заболеваний. Благодаря развитию этой технологии медикам стали доступны методы электростимуляции, применяемые для лечения различных заболеваний с помощью приложения слабых электрических импульсов к определенным частям тела.

Электростимуляция может быть применена к различным частям тела, таким как мозг, спинной мозг, периферические нервы, мышцы и сердце. В зависимости от цели и места стимуляции могут использоваться различные виды электродов, такие как поверхностные, игольчатые, имплантируемые или транскраниальные. Также могут варьироваться параметры стимуляции, такие как частота, интенсивность, длительность и форма импульса. Эти параметры влияют на эффективность и безопасность электростимуляции и должны быть оптимизированы для каждого конкретного случая.
Достижения в области нейронных имплантатов и носимых устройств на фоне последних достижений в области машинного обучения открывают захватывающий потенциал для радикального перехода от практики ситуативного лечения хронических состояний к автоматизированному и целостному биоэлектрическому подходу в медицине.
В долгосрочной перспективе раскрытие потенциала нервной системы с помощью содержащихся в ней данных может стать ключом к новым методам лечения сложных хронических заболеваний, включая гипертонию, диабет, ревматоидный артрит, болезни Паркинсона и Альцгеймера. Для людей с тяжелым хроническим заболеванием нейронная терапия может обеспечить индивидуальное, адаптивное лечение непосредственно через нервную систему, так что бремя таблеток и визитов к врачу станет второстепенным средством, а не повседневной реальностью.
Конечно, такой эволюционный процесс потребует серьезных технологических достижений, включая инновации в нейробиологическом понимании, адаптации машинного обучения для работы в реальном времени, создания миниатюрной электроники и увеличение времени ее автономной работы. Однако последние достижения в области робототехники, искусственного интеллекта и биохайтека дают надежду на то, что новые впечатляющие результаты в этом направлении мы увидим уже в ближайшие годы.
Электромедицина использует естественные сигнальные пути в нервной системе, достигая терапевтических эффектов с помощью имплантированных устройств, которые стимулируют целевые нервы. Обладая многочисленными путями и направленными эффектами, нервная система обеспечивает естественный путь терапевтических вмешательств для противодействия дисфункциям в организме и имеет реальные перспективы в качестве альтернативной или дополнительной терапии состояний, которые не поддаются адекватному контролю с помощью традиционных фармацевтических препаратов.

Биоэлектричество также играет важную роль в регуляции клеточного поведения и формирования эмбриогенеза, регенерации и подавления рака. В современной медицине измерение биоэлектрических потенциалов уже стало распространенной практикой для диагностики. Электрические эффекты, возникающие в активных клетках сердца и мозга, например, обычно контролируются и анализируются для диагностических целей.
Как в теле возникают биоэлектрические процессы?
Биоэлектрические потенциалы идентичны потенциалам, производимым устройствами, такими как, например, батареи или генераторы. В большинстве случаев, однако, биоэлектрический ток состоит из потока ионов (т.е. электрически заряженных атомов или молекул), тогда как электрический ток, используемый для освещения, связи или питания, представляет собой движение электронов.
Если два раствора с разной концентрацией иона разделены мембраной, которая блокирует поток ионов между ними, дисбаланс концентрации создает разность электрического потенциала между растворами.
В результате этого образуется разность потенциалов между внутренней и внешней сторонами мембраны, называемая покоящимся потенциалом. Покоящийся потенциал может быть изменен различными факторами, такими как электрические сигналы от других клеток, гормоны, нейромедиаторы, температура и т. д.
Если покоящийся потенциал достигает определенного порога, клетка может сгенерировать более сильный электрический импульс, называемый действующим потенциалом. Действующий потенциал представляет собой быстрое и кратковременное изменение напряжения между внутренней и внешней сторонами мембраны, вызванное открытием и закрытием ионных каналов. Действующий потенциал может распространяться по мембране и передаваться другим клеткам через специальные структуры, называемые синапсами.
Потенциал для медицинского применения
Нейротерапевтические подходы с применением биоэлектричества уже клинически применяются при различных неврологических, сердечно-сосудистых и воспалительных состояниях. Они нацелены либо на центральную нервную систему, головной мозг и позвоночник, либо на периферическую нервную систему, а также нервы, которые сообщаются между мозгом и органами.
Также среди технологий, которые активно задействуют научные знания о биоэлектричестве весомую долю занимают нейроимпланты. Устройства вживляют в нервную систему человека для восстановления или улучшения некоторых функций.

Технология нейроимплантирования используется в медицине для лечения разных заболеваний, таких как болезнь Паркинсона, эпилепсия, слепота, глухота и паралич. Современные нейроимпланты также могут быть использованы для усиления когнитивных способностей или создания интерфейсов между мозгом и компьютером.
Среди более распространенных электромедицинских методов наблюдения присутствуют электрокардиография, более известная большинству в сокращенном варианте как ЭКГ. Метод измерения электрической активности сердца с помощью электродов, прикрепленных к коже позволяет медикам измерить частоту и ритм сердечных сокращений, а также выявить наличие аномалий, таких как аритмии, инфаркты, блокады и другие.
Схожий метод применяется и при электроэнцефалографии (ЭЭГ), когда электрическую активность мозга измеряют при помощи электродов, прикрепленных к голове. ЭЭГ позволяет медикам увидеть уровень активности мозга, проанализировать его состояние в моменты сна и бодрствования, а в диагностике способен определять наличие судорог, опухолей, инсультов у пациента.
Также стоит вспомнить о неразрывно связанных методах электромиографии (ЭМГ) и электростимуляции. При ЭМГ электрическая активность мышц измеряется при помощи электродов, вставленных в мышцы или прикрепленных к коже. ЭМГ может показать силу и тонус мышц, наличие повреждений нервов или мышц, заболеваний нейромышечного соединения и других заболеваний. Благодаря развитию этой технологии медикам стали доступны методы электростимуляции, применяемые для лечения различных заболеваний с помощью приложения слабых электрических импульсов к определенным частям тела.

Электростимуляция может быть применена к различным частям тела, таким как мозг, спинной мозг, периферические нервы, мышцы и сердце. В зависимости от цели и места стимуляции могут использоваться различные виды электродов, такие как поверхностные, игольчатые, имплантируемые или транскраниальные. Также могут варьироваться параметры стимуляции, такие как частота, интенсивность, длительность и форма импульса. Эти параметры влияют на эффективность и безопасность электростимуляции и должны быть оптимизированы для каждого конкретного случая.
Достижения в области нейронных имплантатов и носимых устройств на фоне последних достижений в области машинного обучения открывают захватывающий потенциал для радикального перехода от практики ситуативного лечения хронических состояний к автоматизированному и целостному биоэлектрическому подходу в медицине.
В долгосрочной перспективе раскрытие потенциала нервной системы с помощью содержащихся в ней данных может стать ключом к новым методам лечения сложных хронических заболеваний, включая гипертонию, диабет, ревматоидный артрит, болезни Паркинсона и Альцгеймера. Для людей с тяжелым хроническим заболеванием нейронная терапия может обеспечить индивидуальное, адаптивное лечение непосредственно через нервную систему, так что бремя таблеток и визитов к врачу станет второстепенным средством, а не повседневной реальностью.
Конечно, такой эволюционный процесс потребует серьезных технологических достижений, включая инновации в нейробиологическом понимании, адаптации машинного обучения для работы в реальном времени, создания миниатюрной электроники и увеличение времени ее автономной работы. Однако последние достижения в области робототехники, искусственного интеллекта и биохайтека дают надежду на то, что новые впечатляющие результаты в этом направлении мы увидим уже в ближайшие годы.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Парадокс Великой Зеленой стены: Китай посадил 78 миллиардов новых деревьев, но климат стал только хуже. Как так вышло?
Ученые назвали причины, почему самый грандиозный экологический проект за всю историю в итоге обернулся головной болью для миллионов китайских граждан...
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Темная сторона Рима: выяснилось, что Империя веками «выкачивала» здоровье из покоренных народов
Новые находки заставили ученых признать: для простых людей римский «прогресс» был скорее приговором, чем спасением. Но почему же так вышло?...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Встречи с неведомым: завершаем чтение дневников разведчика и писателя Владимира Арсеньева
Часть третья: таинственный огонь в лесу, свет из облаков, призрак в тумане и странный дым на море...
Первая «чернокожая британка» оказалась белой: новое исследование заставило историков полностью пересмотреть портрет женщины из Бичи-Хед
Почему ученые так сильно ошиблись с ее внешностью? И стоит ли после этого доверять реконструкциям по ДНК?...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...