Созданы искусственные нейроны — почти как биологические нервные клетки
Искусственный органический нейрон, который точно имитирует характеристики биологических нервных клеток, создан исследователями из Университета Линчепинга (LiU), Швеция. Этот искусственный нейрон может стимулировать живые нервы, что делает его многообещающей технологией для различных медицинских процедур в будущем.
Работа по разработке все более функциональных искусственных нервных клеток продолжается в Лаборатории органической электроники LOE. В 2022 году группа ученых во главе с доцентом Симоной Фабиано продемонстрировала, как искусственный органический нейрон можно интегрировать в живое плотоядное растение, чтобы управлять открытием и закрытием его пасти. Эта синтетическая нервная клетка соответствовала 2 из 20 характеристик, отличающих ее от биологической нервной клетки.
В своем последнем исследовании, опубликованном 12 января в журнале Nature Materials, те же исследователи из LiU сообщили про новую искусственную нервную клетку под названием «органический электрохимический нейрон на основе проводимости» или c-OECN, которая точно имитирует 15 из 20 нейронных особенностей, которые характеризуют биологические нервные клетки, делая их работу более похожей на естественные нервные клетки.
— Симоне Фабиано, главный исследователь группы органической наноэлектроники в LOE.
В 2018 году эта исследовательская группа в Университете Линчепинга одной из первых разработала органические электрохимические транзисторы на основе проводящих полимеров n-типа, материалов, способных проводить отрицательные заряды. Это позволило построить комплементарные органические электрохимические схемы, пригодные для печати. С тех пор группа работает над оптимизацией этих транзисторов, чтобы их можно было печатать в печатном станке на тонкой пластиковой фольге. В результате теперь можно печатать тысячи транзисторов на гибкой подложке и использовать их для разработки искусственных нервных клеток.
В недавно разработанном искусственном нейроне ионы используются для управления потоком электронного тока через проводящий полимер n-типа, что приводит к скачкам напряжения устройства. Этот процесс подобен тому, который происходит в биологических нервных клетках. Уникальный материал в искусственной нервной клетке также позволяет увеличивать и уменьшать ток по почти идеальной колоколообразной кривой, которая напоминает активацию и инактивацию ионных каналов натрия, встречающихся в биологии.
— Симоне Фабиано.
В экспериментах, проведенных в сотрудничестве с Каролинским институтом, новые нейроны c-OECN были подключены к блуждающему нерву мышей. Результаты показывают, что искусственный нейрон может стимулировать нервы мышей, вызывая изменение их частоты сердечных сокращений на 4,5%.
Тот факт, что искусственный нейрон может стимулировать сам блуждающий нерв, может в долгосрочной перспективе проложить путь к важным применениям в различных формах лечения. В целом преимущество органических полупроводников состоит в том, что они биосовместимы, мягки и податливы, а блуждающий нерв играет ключевую роль, например, в иммунной системе организма и обмене веществ.
Следующим шагом исследователей станет снижение энергопотребления искусственных нейронов, которое все еще намного выше, чем у нервных клеток человека. Предстоит еще многое сделать, чтобы искусственно воспроизвести природу.
— Падинхаре Чолаккал Харикеш, постдоктор и главный автор научной работы.
Работа по разработке все более функциональных искусственных нервных клеток продолжается в Лаборатории органической электроники LOE. В 2022 году группа ученых во главе с доцентом Симоной Фабиано продемонстрировала, как искусственный органический нейрон можно интегрировать в живое плотоядное растение, чтобы управлять открытием и закрытием его пасти. Эта синтетическая нервная клетка соответствовала 2 из 20 характеристик, отличающих ее от биологической нервной клетки.
В своем последнем исследовании, опубликованном 12 января в журнале Nature Materials, те же исследователи из LiU сообщили про новую искусственную нервную клетку под названием «органический электрохимический нейрон на основе проводимости» или c-OECN, которая точно имитирует 15 из 20 нейронных особенностей, которые характеризуют биологические нервные клетки, делая их работу более похожей на естественные нервные клетки.
Одной из ключевых проблем при создании искусственных нейронов, которые эффективно имитируют настоящие биологические нейроны, является возможность включения модуляции ионов. Традиционные искусственные нейроны из кремния могут эмулировать многие функции нейронов, но не могут общаться через ионы. Напротив, c-OECN используют ионы, чтобы продемонстрировать несколько ключевых особенностей реальных биологических нейронов
— Симоне Фабиано, главный исследователь группы органической наноэлектроники в LOE.
В 2018 году эта исследовательская группа в Университете Линчепинга одной из первых разработала органические электрохимические транзисторы на основе проводящих полимеров n-типа, материалов, способных проводить отрицательные заряды. Это позволило построить комплементарные органические электрохимические схемы, пригодные для печати. С тех пор группа работает над оптимизацией этих транзисторов, чтобы их можно было печатать в печатном станке на тонкой пластиковой фольге. В результате теперь можно печатать тысячи транзисторов на гибкой подложке и использовать их для разработки искусственных нервных клеток.
В недавно разработанном искусственном нейроне ионы используются для управления потоком электронного тока через проводящий полимер n-типа, что приводит к скачкам напряжения устройства. Этот процесс подобен тому, который происходит в биологических нервных клетках. Уникальный материал в искусственной нервной клетке также позволяет увеличивать и уменьшать ток по почти идеальной колоколообразной кривой, которая напоминает активацию и инактивацию ионных каналов натрия, встречающихся в биологии.
Некоторые другие полимеры демонстрируют такое поведение, но только жесткие полимеры устойчивы к беспорядку, что обеспечивает стабильную работу устройства
— Симоне Фабиано.
В экспериментах, проведенных в сотрудничестве с Каролинским институтом, новые нейроны c-OECN были подключены к блуждающему нерву мышей. Результаты показывают, что искусственный нейрон может стимулировать нервы мышей, вызывая изменение их частоты сердечных сокращений на 4,5%.
Тот факт, что искусственный нейрон может стимулировать сам блуждающий нерв, может в долгосрочной перспективе проложить путь к важным применениям в различных формах лечения. В целом преимущество органических полупроводников состоит в том, что они биосовместимы, мягки и податливы, а блуждающий нерв играет ключевую роль, например, в иммунной системе организма и обмене веществ.
Следующим шагом исследователей станет снижение энергопотребления искусственных нейронов, которое все еще намного выше, чем у нервных клеток человека. Предстоит еще многое сделать, чтобы искусственно воспроизвести природу.
Мы еще многого не понимаем в человеческом мозге и нервных клетках. На самом деле мы не знаем, как нервная клетка использует многие из этих 15 продемонстрированных функций. Имитация нервных клеток может позволить нам лучше понять мозг и построить схемы, способные выполнять интеллектуальные задачи. У нас впереди долгий путь, но это исследование — хорошее начало
— Падинхаре Чолаккал Харикеш, постдоктор и главный автор научной работы.
- Евгения Бусина
- Scitechdaily
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Росархив рассекретил документы: Доказано, что именно Польша не дала СССР остановить Вторую мировую войну
Об этом в 1939 году сообщали из Варшавы французские дипломаты и разведчики...
Удивительные и невероятные приключения первой советской ракеты класса «воздух-воздух»
Военные историки говорят: без якутских мастеров советские конструкторы не смогли бы «взломать» американскую ракету и построить нашу Р-3...
Гробовщик Британии: как Япония похоронила империю, «где никогда не заходит солнце»
Историки говорят: Британская корона получила такой мощный удар, что рассыпалась как карточный домик...
Как рождаются волны-убийцы: российские ученые вплотную приблизились к разгадке этого опасного морского феномена
Правда, для этого пришлось «отменить» действующие модели прогнозов, которые, как оказалось, не работали...
Тесла снова меняет правила игры: генератор по проекту гения выжимает электричество из воздуха
Эксперты говорят, что мы только сейчас доросли до великого изобретателя. Из 300 его открытий реализованы лишь десятки. Что еще может скрываться в архивах?...
225,8 миллиарда долларов: Америка требует от России оплатить колоссальный долг царского времени
Почему ведущие эксперты называют этот иск ящиком Пандоры и предупреждают, что он может закончиться для Штатов и всего Запада огромными проблемами?...
Почему компонент сыра, который используется уже 30 лет, вызвал внезапную панику у американцев?
Эксперты рассказали: используется ли это вещество в России и стоит ли нам волноваться...
Почему вирусы в космосе ведут себя странно, а поведение их вообще не предсказуемо?
Новые эксперименты на МКС выявили такие поразительные аномалии. Но ученые только рады этому...
Снова плохая новость для Илона Маска: выяснилось, что атмосфера Марса сама производит яд
Готово ли человечество не просто прилететь на Красную планету, а жить в ядовитой пыли и вести бесконечную борьбу за выживание?...
Легендарный египтолог рассказал, что сейчас шансы найти гробницу самой известной древней царицы высоки как никогда
Почему Захи Хавасс так уверен, что сумеет совершить величайшее открытие в долине Нила?...
Еще одна загадка Древнего Рима: Что делали верблюды-гибриды в сердце Европы?
Эксперты говорят: новое открытие может серьезно переписать историю поздней Римской империи...
Импланты в голове превратили жизнь китайских пациентов в кошмар наяву
Участник эксперимента рассказал: «Когда нейрочип отключили, я упал на пол. Жить без импланта было просто невыносимо. Я умолял врача включить чип снова. И тогда...