Новый гибкий материал стал кандидатом для строительства в космосе
В живых организмах многое состоит из простых повторяющихся элементов, собранных в развивающуюся решётку. Например, кости или кораллы складываются в результате многократного повторения базового элемента, который разрастается. Такие натуральные структуры, принимая те или иные формы, могут обладать удивительной прочностью, многофункциональностью и другими полезными свойствами.
Самое главное, что полученная структура часто обладает свойствами, которых нет у исходного элемента решётки. Например, отдельные костные клетки или скелеты коралловых полипов не очень прочные, но, работая вместе, они выдерживают огромный вес животных или гигантские подводные колонии.
Вдохновляясь природой, инженеры стремились воспроизвести эту гибкость. Определенного успеха в этом вопросе ещё в 2021 году достигли исследователи из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS). Они разработали материал, который может принимать и удерживать любую возможную форму, как показано схематически ниже.
В SEAS в 2021-м соединили отдельные простые ячейки со стабильными суставами, построив двухмерные и трёхмерные структуры. Исследователи назвали сборку «тотиморфными материалами», то есть способными разворачиваться в любую стабильную конструкцию. При этом речь идёт не о том, из чего сформирован материал, а о том, как он структурирован. Напрашивается прямое сравнение с оригами или изделиями из картона: простое и податливое можно сложить в нечто сложное и прочное.
Изобретение из SEAS открыло путь к созданию нового типа многофункционального материала, который можно использовать в самых разных областях — от робототехники и биотехнологий до архитектуры.
Дальнейшим шагом на этом направлении стало изучение метаматериалов — структур, которые могут менять свою форму или свойства под воздействием простой внешней силы, например электрического поля или за счёт сжатия.
Такие материалы особенно интересны для применения в космосе. Так что очередного успеха в этом достигли учёные из группы перспективных концепций Европейского космического агентства (ESA).
Основным элементом их тотиморфной решётки стал треугольник. К неподвижной балке с шаровым шарниром в центре они прикрепили рычаг, а другой конец рычага — к концам неподвижной балки с помощью двух пружин. Когда несколько таких фигур соединены вместе, полученная структура может принимать самые разные формы и структуры с минимальными усилиями, что придало тотиморфной решётке от ESA невероятную гибкость.
Один из основных вопросов относительно этих решёток заключался в том, как сложить большую структуру иначе, не спутав решётку, и как выполнить это преобразование наиболее эффективно.
Исследователи сначала разработали компьютерную модель тотиморфных решёток и выяснили, как оптимизировать преобразование одной формы в другую.
Инженеры продемонстрировали новую технологию на двух примерах. В первом случае они создали простую конструкцию для проживания в ней космонавтов, которая могла менять свою форму и жёсткость. В будущем такие жилые модули для инопланетных поселенцев сохраняли бы свою форму до тех пор, пока их не пересобрали бы для других нужд.
В качестве примера исследователи сконструировали гибкий космический телескоп. Благодаря тотиморфным решёткам телескоп мог менять фокусное расстояние, изменяя кривизну линзы. Это позволило бы запустить один многоцелевой телескоп с возможностью перенастраивать его для наблюдения за различными объектами.
Тотиморфные решётки от ESA на сегодняшний день пока ещё пребывают на стадии бумажных и пластиковых моделей. Однако исследование имеет решающее значение для продвижения человечества в космос.
Дороговизна и сложность запуска материалов за пределы Земли означают, что науке необходимы гибкие, настраиваемые конструкции, которые будет выгоднее запускать в космос и там использовать.
Самое главное, что полученная структура часто обладает свойствами, которых нет у исходного элемента решётки. Например, отдельные костные клетки или скелеты коралловых полипов не очень прочные, но, работая вместе, они выдерживают огромный вес животных или гигантские подводные колонии.
Вдохновляясь природой, инженеры стремились воспроизвести эту гибкость. Определенного успеха в этом вопросе ещё в 2021 году достигли исследователи из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS). Они разработали материал, который может принимать и удерживать любую возможную форму, как показано схематически ниже.
В SEAS в 2021-м соединили отдельные простые ячейки со стабильными суставами, построив двухмерные и трёхмерные структуры. Исследователи назвали сборку «тотиморфными материалами», то есть способными разворачиваться в любую стабильную конструкцию. При этом речь идёт не о том, из чего сформирован материал, а о том, как он структурирован. Напрашивается прямое сравнение с оригами или изделиями из картона: простое и податливое можно сложить в нечто сложное и прочное.
Изобретение из SEAS открыло путь к созданию нового типа многофункционального материала, который можно использовать в самых разных областях — от робототехники и биотехнологий до архитектуры.
Дальнейшим шагом на этом направлении стало изучение метаматериалов — структур, которые могут менять свою форму или свойства под воздействием простой внешней силы, например электрического поля или за счёт сжатия.
Такие материалы особенно интересны для применения в космосе. Так что очередного успеха в этом достигли учёные из группы перспективных концепций Европейского космического агентства (ESA).
Основным элементом их тотиморфной решётки стал треугольник. К неподвижной балке с шаровым шарниром в центре они прикрепили рычаг, а другой конец рычага — к концам неподвижной балки с помощью двух пружин. Когда несколько таких фигур соединены вместе, полученная структура может принимать самые разные формы и структуры с минимальными усилиями, что придало тотиморфной решётке от ESA невероятную гибкость.
Один из основных вопросов относительно этих решёток заключался в том, как сложить большую структуру иначе, не спутав решётку, и как выполнить это преобразование наиболее эффективно.
Исследователи сначала разработали компьютерную модель тотиморфных решёток и выяснили, как оптимизировать преобразование одной формы в другую.
Инженеры продемонстрировали новую технологию на двух примерах. В первом случае они создали простую конструкцию для проживания в ней космонавтов, которая могла менять свою форму и жёсткость. В будущем такие жилые модули для инопланетных поселенцев сохраняли бы свою форму до тех пор, пока их не пересобрали бы для других нужд.
В качестве примера исследователи сконструировали гибкий космический телескоп. Благодаря тотиморфным решёткам телескоп мог менять фокусное расстояние, изменяя кривизну линзы. Это позволило бы запустить один многоцелевой телескоп с возможностью перенастраивать его для наблюдения за различными объектами.
Тотиморфные решётки от ESA на сегодняшний день пока ещё пребывают на стадии бумажных и пластиковых моделей. Однако исследование имеет решающее значение для продвижения человечества в космос.
Дороговизна и сложность запуска материалов за пределы Земли означают, что науке необходимы гибкие, настраиваемые конструкции, которые будет выгоднее запускать в космос и там использовать.
- Дмитрий Ладыгин
- cdn.jwplayer.com/previews/IwykpYbV; eurekalert.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Ученые ошибались десятилетиями: в центрах галактик находится совсем не то
Открытие невидимых звезд из темной материи должно изменить всю астрономию....
Китайские хакеры вскрыли компьютер министра финансов США
Эксперты говорят, что это лишь один из эпизодов небывалой по масштабам кибератаки из Китая....
Остров-призрак снова появился в Каспийском море
Исследователи предупреждают: смотрите прямо сейчас, пока он снова не исчез....
Учёные обнаружили «затонувшие миры» глубоко в мантии Земли
Хотя их там, казалось бы, быть не должно....
Французские астрономы раскрыли одну из самых интригующих загадок космоса?
Ученые уверены, что теперь знают, почему у спутников нет колец. Но так ли это?...
Могут ли оранжевые пещерные крокодилы-карлики мутировать в новый вид?
Ученые рассказали, как скоро это может произойти....
«Эффект Помпеев»: находка столетия показала, как мылась и умирала римская элита
Кажется, что люди ушли оттуда минуту назад....
Окаменелости «человека» возрастом 20 000 лет оказались совсем не тем, что думали японские ученые
Новое исследование рассказало, кому на самом деле принадлежали древние кости....
Окаменелость из Китая: как древняя кошка удивила весь научный мир
Ученые говорят, что взрослая особь, жившая 300 тысяч лет назад, была самой маленькой в истории....
Большинство учёных убеждены в существовании жизни на иных планетах
Опрос раскрыл царящий оптимизм мнений....
Путешествие длиною в миллионы лет
Ученые рассказали, где были атомы, пока не попали в ваше тело....
Тёмная сторона океана: новый вид гигантских мокриц назвали в честь Дарта Вейдера
Их уже кинулись активно вылавливать и поедать....
Китай готов шокировать всех огромной солнечной электростанцией в космосе
Если все получится, китайцы будут добывать на орбите больше энергии, чем дает вся добытая нефть....
В обычных грибах нашли средство для укрепления здоровья
Расшифрован молекулярный механизм эрготионеина....
Ученые обнаружили скрытый механизм землетрясений, о котором никто не догадывался
Возможно, новое открытие в скором времени позволит очень точно предсказывать подземные катастрофы....
В гонконгскую больницу поступил «серебряный человек»
Врачи разводят руками, не в силах объяснить эту аномалию....