
Льда на Луне ещё больше, чем думали
Залежи льда в реголите (лунной пыли) и горных породах на естественном спутнике нашей планеты куда богаче, чем считалось ранее. Утверждать так позволяет новый анализ данных, поступающих с автоматической орбитальной станция NASA Lunar Reconnaissance Orbiter (LRO), которая представляет собой искусственный спутник Луны.
Лёд рассматривают как ценнейший ресурс для будущих лунных экспедиций с участием человека. Вода понадобится будущим поселенцам-исследователям и как питьё, и для выработки пригодного для дыхания воздуха, и для защиты от радиации, и чтобы расщеплять её на водородные и кислородные компоненты для производства ракетного топлива, и для получения энергии.
В ходе предыдущих исследований признаки льда находили в постоянно затенённых из-за нехватки солнечного света районах Луны, которые для краткости обычно называют PSR. Их выявили вблизи Южного полюса, в том числе внутри ударных кратеров Кабео, Хауорт, Шумейкер и Фаустини.
Новое исследование показало, что многочисленные признаки водяного льда наблюдаются в PSR не только на Южном полюсе, но и, по крайней мере, на 77-м градусе южной широты Луны. Об этом сообщил представитель НАСА Тимоти МакКланахан.
Открытие должно помочь планам будущего лунного проекта картографированием мест, где выше вероятность обнаружить лёд. PSR обычно встречаются в низинах вблизи лунных полюсов, на которые не падал свет уже миллиарды лет, отчего там постоянно очень низкая температура. Компьютерная модель показала, что наибольшая концентрация льда вероятна вблизи самых холодных мест в PSR, с температурой ниже −198 °C, и у основания склонов в PSR, обращённых к полюсу.
— МакКланахан.
В ходе исследования также нанесли на карту участки, где следует ожидать более скудных отложений льда. Они должны находиться в более тёплых районах, то есть освещаемых хотя бы время от времени.
Считается, что лёд очутился в лунной пыли при столкновении с кометами и метеоритами. Также есть гипотеза, что он просочился в виде пара из недр Луны или отложился в результате химических реакций, которые протекали в реголите между водородом и кислородом при участии солнечного ветра.
Считается, что падение метеоритов, космическая радиация или солнечный свет вышибали или выпаривали молекулы льда из реголита, которые затем кочевали по поверхности Луны, пока не застывали в PSR, скованные экстремальным холодом. Постоянно холодные участки могут сохранять молекулы льда вблизи поверхности, быть может, уже миллиарды лет в виде залежей, перспективных для добычи. Напротив, предполагается, что лёд быстро исчезает под воздействием прямых солнечных лучей.
Учёные использовали установленный на LRO прибор Lunar Exploration Neutron Detector (LEND), чтобы выявить признаки льда. В частности, специалисты задействовали встроенный в LEND датчик нейтронов CSETN, который охватывает за раз участки Луны диаметром по 30 км.
Нейтроны выделяются под воздействием высокоэнергетических межгалактических лучей. Те возникают, в свою очередь, после мощных событий в космосе, например, при взрывах звёзд. Поверхность Луны реагирует на лучи расщеплением атомов реголита и рассеиванием нейтронов, то есть субатомных (размерами меньше атома) частиц. Нейтроны могут исходить с глубины примерно в метр, пробиваясь при этом сквозь реголит и натыкаясь на другие атомы. В общем, некоторые из них в итоге направляются в космос, где их можно обнаружить с помощью LEND.
Поскольку у водорода примерно та же атомная масса, что и у нейтрона, столкновение с водородом приводит к потере нейтроном сравнительно большего количества энергии, чем при взаимодействии с элементами в составе реголита. Таким образом, там, где водород присутствует в реголите, его концентрация приводит к соответствующему уменьшению наблюдаемого количества нейтронов.
Эти явления позволили предположить — если все PSR имеют равную пропорцию с водородом, то CSETN должен определять их по концентрации этого элемента и в зависимости от площади. То есть от более обширных PSR следовало ожидать данных о большем количестве водорода.
— МакКланахан.
В итоге соотношение оказывалось предсказуемо слабым при обзоре небольших PSR, но усиливалось с увеличением площади таких постоянно затенённых участков Луны.
Лёд рассматривают как ценнейший ресурс для будущих лунных экспедиций с участием человека. Вода понадобится будущим поселенцам-исследователям и как питьё, и для выработки пригодного для дыхания воздуха, и для защиты от радиации, и чтобы расщеплять её на водородные и кислородные компоненты для производства ракетного топлива, и для получения энергии.
В ходе предыдущих исследований признаки льда находили в постоянно затенённых из-за нехватки солнечного света районах Луны, которые для краткости обычно называют PSR. Их выявили вблизи Южного полюса, в том числе внутри ударных кратеров Кабео, Хауорт, Шумейкер и Фаустини.
Новое исследование показало, что многочисленные признаки водяного льда наблюдаются в PSR не только на Южном полюсе, но и, по крайней мере, на 77-м градусе южной широты Луны. Об этом сообщил представитель НАСА Тимоти МакКланахан.
Открытие должно помочь планам будущего лунного проекта картографированием мест, где выше вероятность обнаружить лёд. PSR обычно встречаются в низинах вблизи лунных полюсов, на которые не падал свет уже миллиарды лет, отчего там постоянно очень низкая температура. Компьютерная модель показала, что наибольшая концентрация льда вероятна вблизи самых холодных мест в PSR, с температурой ниже −198 °C, и у основания склонов в PSR, обращённых к полюсу.
Пока сложно оценить запасы льда в PSR или утверждать, следует ли их искать под слоем сухого реголита. Однако ожидается, что на каждый квадратный метр под такой сыпучей поверхностью должно быть хотя бы по 5 л льда по сравнению с иными участками Луны
— МакКланахан.
В ходе исследования также нанесли на карту участки, где следует ожидать более скудных отложений льда. Они должны находиться в более тёплых районах, то есть освещаемых хотя бы время от времени.
Считается, что лёд очутился в лунной пыли при столкновении с кометами и метеоритами. Также есть гипотеза, что он просочился в виде пара из недр Луны или отложился в результате химических реакций, которые протекали в реголите между водородом и кислородом при участии солнечного ветра.
Считается, что падение метеоритов, космическая радиация или солнечный свет вышибали или выпаривали молекулы льда из реголита, которые затем кочевали по поверхности Луны, пока не застывали в PSR, скованные экстремальным холодом. Постоянно холодные участки могут сохранять молекулы льда вблизи поверхности, быть может, уже миллиарды лет в виде залежей, перспективных для добычи. Напротив, предполагается, что лёд быстро исчезает под воздействием прямых солнечных лучей.
Учёные использовали установленный на LRO прибор Lunar Exploration Neutron Detector (LEND), чтобы выявить признаки льда. В частности, специалисты задействовали встроенный в LEND датчик нейтронов CSETN, который охватывает за раз участки Луны диаметром по 30 км.
Нейтроны выделяются под воздействием высокоэнергетических межгалактических лучей. Те возникают, в свою очередь, после мощных событий в космосе, например, при взрывах звёзд. Поверхность Луны реагирует на лучи расщеплением атомов реголита и рассеиванием нейтронов, то есть субатомных (размерами меньше атома) частиц. Нейтроны могут исходить с глубины примерно в метр, пробиваясь при этом сквозь реголит и натыкаясь на другие атомы. В общем, некоторые из них в итоге направляются в космос, где их можно обнаружить с помощью LEND.
Поскольку у водорода примерно та же атомная масса, что и у нейтрона, столкновение с водородом приводит к потере нейтроном сравнительно большего количества энергии, чем при взаимодействии с элементами в составе реголита. Таким образом, там, где водород присутствует в реголите, его концентрация приводит к соответствующему уменьшению наблюдаемого количества нейтронов.
Эти явления позволили предположить — если все PSR имеют равную пропорцию с водородом, то CSETN должен определять их по концентрации этого элемента и в зависимости от площади. То есть от более обширных PSR следовало ожидать данных о большем количестве водорода.
Компьютерную модель построили на базе теоретического исследования. Теория гласила, что нейтронные звёзды с повышенным содержанием водорода можно обнаружить через нейтронные телескопы. Подходящая корреляция наблюдалась в излучении 502 нейтронных звёзд, которые выделялись среди окружающих областей космоса с меньшим содержанием водорода
— МакКланахан.
В итоге соотношение оказывалось предсказуемо слабым при обзоре небольших PSR, но усиливалось с увеличением площади таких постоянно затенённых участков Луны.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...