Физики придумали робота со свойствами жидкости и твёрдого тела одновременно
Физики разрабатывают модульного робота со свойствами и жидкости, и твёрдого тела. Конструкция позволяет отдельным блокам двигаться как сплочённое целое.
Что общего у косяка рыб, пчелосемьи и синхронного полёта сотен скворцов в стае? Они проявляют поведение, которое называется роением. Иными словами, движутся синхронно, как бы в составе жидкости, изменяющей форму. Специалисты из Чикаго решили взглянуть на явление через призму механики, чтобы применить принципы физики в робототехнике.

Способность роя менять форму подобно жидкости, двигаться согласованно без каких-либо сигналов от вожака и реагировать на окружающие условия вдохновила коллектив авторов на изобретение, которое они назвали Granulobot («Гранулобот»), то есть состоящий из небольших элементов. Представленный образец может разъединяться на части, собираться опять и перестраиваться для адаптации к окружающим условиям. И в зависимости от конфигурации может действовать как твёрдое тело либо текучая жидкость. Совокупность деталей «стирает различия между роботами разного типа — мягкими, модульными и роевыми», отметили изобретатели, описывая прототип в журнале Science Robotics («Научная робототехника»).
«Гранулированный робот» — это комплекс из цилиндрических деталей, похожих на шестерни с парой магнитов, вращающихся вокруг оси. Один магнит в каждом «бочонке» вращается свободно, а другой приводится в движение двигателем на батарейках. Конструкция даёт возможность элементам соединяться за счёт притяжения магнитов, а затем толкать соседние детали и заставлять их вращаться. Взаимодействие элементов запускает движение агрегата в целом.

На иллюстрации красные стрелки указывают направление вращения приводимых в действие магнитов. Синие — процесс перегруппировки. Отдельные блоки «Гранулобота» могут вращаться и с помощью магнита «слипаться» в более крупные блоки, которые умеют перекатываться. Оказывая крутящее влияние на соседей, отдельные узлы и группы узлов могут изменять их положение, то есть форму сборки. За счёт крутящего момента, превышающего магнитную связь между соседними блоками, они могут отделяться и самостоятельно формировать автономных, отдельных роботов.
Система, меняющая форму, способна забираться в укромные уголки и трещины. И то, и другое было бы полезно, например, при поисково-спасательных работах, объяснил Генрих Ягер, профессор физики Чикагского университета.
Чтобы робот умел изменять форму и выполнять различные функции, крайне важна его способность варьировать жёсткость и мягкость, как того потребует момент. Подобное происходит, когда частицы в неупорядоченной системе оказываются настолько близко друг к другу, что сталкиваются между собой, и их «текучесть» прекращается. Генрих Ягер сравнил это с вождением по шоссе: если столкнуться бампер к бамперу с другими автомобилями, то движение со скрежетом стопорится. Когда это происходит в материале из подвижных элементов, добавил Ягер, то наблюдается, по сути, тот же затор.
Ещё один пример — пачка молотого кофе в вакуумной упаковке. Если нарушить упаковку, то порошок может высыпаться. Такой принцип оказался настолько хорош, что эти же изобретатели использовали его ранее, в 2010 году, для конструкции мягкого роботизированного захвата (на фото ниже), который способен удерживать предметы независимо от их формы.

Цилиндры, из которых состоит «Гранулобот», больше, чем крупицы кофе, но принцип аналогичный. «Затор» из элементов — главное для того, чтобы «Гранулобот» мог переключиться от податливости к твёрдости конструкции.
Генрих Ягер пояснил, что на лежащие в основе «Гранулобота» физические принципы не влияют масштаб или температура. Поэтому варианты такого устройства могут быть разных размеров и служить, например, под водой или в открытом космосе.
Что общего у косяка рыб, пчелосемьи и синхронного полёта сотен скворцов в стае? Они проявляют поведение, которое называется роением. Иными словами, движутся синхронно, как бы в составе жидкости, изменяющей форму. Специалисты из Чикаго решили взглянуть на явление через призму механики, чтобы применить принципы физики в робототехнике.

Способность роя менять форму подобно жидкости, двигаться согласованно без каких-либо сигналов от вожака и реагировать на окружающие условия вдохновила коллектив авторов на изобретение, которое они назвали Granulobot («Гранулобот»), то есть состоящий из небольших элементов. Представленный образец может разъединяться на части, собираться опять и перестраиваться для адаптации к окружающим условиям. И в зависимости от конфигурации может действовать как твёрдое тело либо текучая жидкость. Совокупность деталей «стирает различия между роботами разного типа — мягкими, модульными и роевыми», отметили изобретатели, описывая прототип в журнале Science Robotics («Научная робототехника»).
«Гранулированный робот» — это комплекс из цилиндрических деталей, похожих на шестерни с парой магнитов, вращающихся вокруг оси. Один магнит в каждом «бочонке» вращается свободно, а другой приводится в движение двигателем на батарейках. Конструкция даёт возможность элементам соединяться за счёт притяжения магнитов, а затем толкать соседние детали и заставлять их вращаться. Взаимодействие элементов запускает движение агрегата в целом.

На иллюстрации красные стрелки указывают направление вращения приводимых в действие магнитов. Синие — процесс перегруппировки. Отдельные блоки «Гранулобота» могут вращаться и с помощью магнита «слипаться» в более крупные блоки, которые умеют перекатываться. Оказывая крутящее влияние на соседей, отдельные узлы и группы узлов могут изменять их положение, то есть форму сборки. За счёт крутящего момента, превышающего магнитную связь между соседними блоками, они могут отделяться и самостоятельно формировать автономных, отдельных роботов.
Система, меняющая форму, способна забираться в укромные уголки и трещины. И то, и другое было бы полезно, например, при поисково-спасательных работах, объяснил Генрих Ягер, профессор физики Чикагского университета.
Чтобы робот умел изменять форму и выполнять различные функции, крайне важна его способность варьировать жёсткость и мягкость, как того потребует момент. Подобное происходит, когда частицы в неупорядоченной системе оказываются настолько близко друг к другу, что сталкиваются между собой, и их «текучесть» прекращается. Генрих Ягер сравнил это с вождением по шоссе: если столкнуться бампер к бамперу с другими автомобилями, то движение со скрежетом стопорится. Когда это происходит в материале из подвижных элементов, добавил Ягер, то наблюдается, по сути, тот же затор.
Ещё один пример — пачка молотого кофе в вакуумной упаковке. Если нарушить упаковку, то порошок может высыпаться. Такой принцип оказался настолько хорош, что эти же изобретатели использовали его ранее, в 2010 году, для конструкции мягкого роботизированного захвата (на фото ниже), который способен удерживать предметы независимо от их формы.

Цилиндры, из которых состоит «Гранулобот», больше, чем крупицы кофе, но принцип аналогичный. «Затор» из элементов — главное для того, чтобы «Гранулобот» мог переключиться от податливости к твёрдости конструкции.
Генрих Ягер пояснил, что на лежащие в основе «Гранулобота» физические принципы не влияют масштаб или температура. Поэтому варианты такого устройства могут быть разных размеров и служить, например, под водой или в открытом космосе.
- Дмитрий Ладыгин
- youtu.be/yOXL4AXMst0; youtu.be/V4f_1_r80RY; techxplore.com; phys.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Загадочный взрыв над Москвой: зачем NASA срочно удалило все данные об объекте 2025 US6?
И почему эксперты говорят, что мы никогда не узнаем правды?...
В России обнаружена рыба, которая 70 лет считалась полностью вымершей
И не единственная такая сенсация в нашей стране за последние годы...
Российские ученые создали уникальный материал будущего: новый металл прочнее любой стали, но дешевле даже алюминия
Мир высоких технологий ждал этого открытия десятилетия. Наша страна получила реальный шанс стать лидером металлургии...
Ученые наконец-то взломали астрономический код цивилизации майя
700 лет точных предсказаний, 145 солнечных затмений: гениальный способ из древности отлично работает до сих пор...
«Парящие» берлоги: Как треугольные дома помогут России удержать Арктику
Кто победит? Глобальное изменение климата или новые технологии?...
1300 лет назад неизвестные грабители вскрыли гробницу знатного воина, но вообще не тронули сокровищ. Почему?
Венгерские археологи уверены, что разгадали этот мистический детектив. Но так ли это на самом деле?...
Россия снова первая: в космосе вырастили идеальные кристаллы!
Рассказываем, почему проект «Экран-М» может стать началом новой эры полупроводников, где Россия будет ведущей в мире...
Тающий лед Антарктиды прячет от нас глубинную «бомбу» замедленного действия
Неожиданный климатический парадокс: малая беда хранит человечество от большой. Но это ненадолго...
Какие тайны скрывает 40 000-летний... карандаш, найденный в одной из пещер Крыма?
И почему ученые уверены, что эта находка заставляет в корне пересмотреть древнейшую историю человечества?...
Эксперимент показал, что на самом деле творится под марсианскими дюнами каждую весну
Оказалось, что с наступлением тепла на Красной планете активизируются... ледяные «кроты»...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...
Тайна изумрудной мумии, не дававшей покоя ученым 38 лет, наконец-то разгадана!
Ученые признаются: они не ожидали, что им придется раскрыть самый настоящий химический детектив...
«Инопланетный зонд», который преследует Землю, был сделан… в СССР?
Почему известный гарвардский астроном выдвинул именно эту версию?...