Впервые в мире напечатали роботизированную руку с «человеческой» структурой
Учёные напечатали на 3D-принтере роботизированную руку с костями и сухожилиями, подобными человеческим. После печати слоя оптическое сканирование выявляет недостатки и исправляет их за счёт нового слоя.
Даже самые передовые роботы всё ещё неспособны перемещаться и двигать конечностями с той же плавностью и грацией, что и люди. Даже те, которые могут эффектно бегать, прыгать или танцевать, отличаются механическими движениями. А всё потому, что у них внутри нет человеческого комплекта костей.
Кроме того, у роботов вместо эластичных связок — искусственные соединения из углеродного волокна и металлов. Роберт Кацшманн, профессор робототехники, объяснил, что обычно созданные инженерами узлы и механизмы придают роботу способность удерживать предметы и принимать предназначенные позы, но лишь так, как мы видим: резким и скованным образом.
Над проблематикой задумались в Швейцарской высшей технической школе Цюриха (ETHZ), и вместе с ними представители американского стартапа Inkbit. И придумали способ трёхмерной печати, чтобы создать первую в мире роботизированную руку с человекоподобным внутренним строением, то есть с искусственными костями, связками и сухожилиями, похожими на человеческие. Роборуку напечатали совершенно новым методом нанесения, который назвали «струйной обработкой с визуальным контролем» (vision-controlled jetting, VCJ).
Пока что большинство напечатанных на 3D-принтере роботов изготавливают из так называемых быстроотверждаемых полиакрилатов. Такие полимеры зарекомендовали себя как быстро затвердевающие в процессе печати и долговечные. Но при этом отличаются неровностями за счёт послойного нанесения. Вот почему поверхность созданных на распространённых 3D-принтерах деталей затем приходится сглаживать механическим путём. И вообще слоистость определяет степень мягкости и типы пригодных для трёхмерной печати материалов. И это ещё одна причина, почему созданные на принтерах роботы обычно имеют ограничения по эластичности, форме и размерам.
Если дальше перечислять недостатки распространённых повсеместно принтеров, то из-за скорости отверждения полимеров у производителей не остаётся времени влиять на слои, как того хотелось бы. В результате приходится разделять изготовление компонентов того или иного робота на этапы, зависящие не от замысла, а от материалов. И после печати каждой детали приходится ещё тщательно контролировать качество, что лишь повышает трудоёмкость.
Из-за всего перечисленного метод VCJ приобретает особое значение. Для него подходят мягкие, медленно затвердевающие тиоленовые полимеры. Кацшманн отметил их отличную эластичность: при сгибании они принимают исходное положение куда быстрее полиакрилатов.
В системе печати VCJ кроме 3D-принтера необходим также трёхмерный лазерный сканер. Он даёт визуальную оценку гладкости каждого нанесённого слоя по мере печати.
— Роберт Кацшманн, профессор робототехники ETHZ, соавтор изобретения.
После сканирования не нужна механическая планаризация, то есть выравнивание, нанесённого слоя. Вместо этого последующий слой компенсирует все неровности предыдущего. Войцех Матусик, один из авторов исследования и профессор компьютерных наук Массачусетского технологического института, объяснил, что механизм обратной связи компенсирует неровности при печати, рассчитывая корректировки материала сразу же и с предельной точностью.
Более того, изобретатели утверждают, что их управляемая система с замкнутым контуром позволяет напечатать для робота всё и сразу. Кацшманн подчеркнул, что упомянутой роботизированной руке после печати сборка была не нужна. Подход существенно ускоряет проектирование, так как можно перейти сразу от замысла к работающему качественному прототипу, избегая затрат на промежуточные оснастку и сборку.
Благодаря технологии VCJ исследователи с успехом напечатали роборуку, структура которой похожа на строение человеческой руки. Устройство оснащено сенсорными панелями и датчиками давления, в нём 19 «сухожилий», позволяющих двигать запястьем и пальцами. Рука «осязает», захватывает предметы, а пальцы при необходимости замирают после прикосновения. Исследователи действовали прямо по образу и подобию, то есть применили данные МРТ настоящей руки для конструирования.
Роборука — лишь образец успешной технологии. В дополнение к ней её создатели также напечатали роботизированное сердце, шестиногого робота и метаматериал-поглотитель вибраций. Исследователи отметили, что всё это функционирует как гибридные мягко-жёсткие системы, то есть роботы, сочетающие в себе материалы обоих типов. Все они задуманы для превосходства и над исключительно жёсткими, и над полностью мягкими роботами с точки зрения гибкости и для решения свойственных прежним моделям проблем.
Что касается типичных вполне мягких роботов: когда их габариты разняться от миллиметров до сантиметров, ими легко управлять и приводить в движение. Но мягкие роботы из гибких материалов, например эластомеров, не отличаются чёткой геометрией и прочностью, особенно по мере увеличения размеров.
Итак, технология VCJ обладает потенциалом для создания масштабируемых гибридных мягко-жёстких роботов. От лица коллектива инженеров Кацшманн заявил, что VCJ в конечном итоге заменит все другие методы контактной струйной печати. Причём не только роботов: с VCJ также можно начать производство медицинских имплантатов и изделий для прочих отраслей. Высокое разрешение, различные свойства используемых материалов и длительный срок службы делают 3D-печать с помощью системы VCJ очень привлекательными и для учёных, и для коммерческого применения.
Даже самые передовые роботы всё ещё неспособны перемещаться и двигать конечностями с той же плавностью и грацией, что и люди. Даже те, которые могут эффектно бегать, прыгать или танцевать, отличаются механическими движениями. А всё потому, что у них внутри нет человеческого комплекта костей.
Кроме того, у роботов вместо эластичных связок — искусственные соединения из углеродного волокна и металлов. Роберт Кацшманн, профессор робототехники, объяснил, что обычно созданные инженерами узлы и механизмы придают роботу способность удерживать предметы и принимать предназначенные позы, но лишь так, как мы видим: резким и скованным образом.
Над проблематикой задумались в Швейцарской высшей технической школе Цюриха (ETHZ), и вместе с ними представители американского стартапа Inkbit. И придумали способ трёхмерной печати, чтобы создать первую в мире роботизированную руку с человекоподобным внутренним строением, то есть с искусственными костями, связками и сухожилиями, похожими на человеческие. Роборуку напечатали совершенно новым методом нанесения, который назвали «струйной обработкой с визуальным контролем» (vision-controlled jetting, VCJ).
Пока что большинство напечатанных на 3D-принтере роботов изготавливают из так называемых быстроотверждаемых полиакрилатов. Такие полимеры зарекомендовали себя как быстро затвердевающие в процессе печати и долговечные. Но при этом отличаются неровностями за счёт послойного нанесения. Вот почему поверхность созданных на распространённых 3D-принтерах деталей затем приходится сглаживать механическим путём. И вообще слоистость определяет степень мягкости и типы пригодных для трёхмерной печати материалов. И это ещё одна причина, почему созданные на принтерах роботы обычно имеют ограничения по эластичности, форме и размерам.
Если дальше перечислять недостатки распространённых повсеместно принтеров, то из-за скорости отверждения полимеров у производителей не остаётся времени влиять на слои, как того хотелось бы. В результате приходится разделять изготовление компонентов того или иного робота на этапы, зависящие не от замысла, а от материалов. И после печати каждой детали приходится ещё тщательно контролировать качество, что лишь повышает трудоёмкость.
Из-за всего перечисленного метод VCJ приобретает особое значение. Для него подходят мягкие, медленно затвердевающие тиоленовые полимеры. Кацшманн отметил их отличную эластичность: при сгибании они принимают исходное положение куда быстрее полиакрилатов.
В системе печати VCJ кроме 3D-принтера необходим также трёхмерный лазерный сканер. Он даёт визуальную оценку гладкости каждого нанесённого слоя по мере печати.
Визуальный контроль превращает печать в полностью бесконтактную, позволяя наносить более широкий спектр пригодных полимеров. Мы, например, печатали с помощью полимеров на основе тиола, потому что это позволило нам создать структуры, устойчивые к ультрафиолету и влажности
— Роберт Кацшманн, профессор робототехники ETHZ, соавтор изобретения.
После сканирования не нужна механическая планаризация, то есть выравнивание, нанесённого слоя. Вместо этого последующий слой компенсирует все неровности предыдущего. Войцех Матусик, один из авторов исследования и профессор компьютерных наук Массачусетского технологического института, объяснил, что механизм обратной связи компенсирует неровности при печати, рассчитывая корректировки материала сразу же и с предельной точностью.
Более того, изобретатели утверждают, что их управляемая система с замкнутым контуром позволяет напечатать для робота всё и сразу. Кацшманн подчеркнул, что упомянутой роботизированной руке после печати сборка была не нужна. Подход существенно ускоряет проектирование, так как можно перейти сразу от замысла к работающему качественному прототипу, избегая затрат на промежуточные оснастку и сборку.
Благодаря технологии VCJ исследователи с успехом напечатали роборуку, структура которой похожа на строение человеческой руки. Устройство оснащено сенсорными панелями и датчиками давления, в нём 19 «сухожилий», позволяющих двигать запястьем и пальцами. Рука «осязает», захватывает предметы, а пальцы при необходимости замирают после прикосновения. Исследователи действовали прямо по образу и подобию, то есть применили данные МРТ настоящей руки для конструирования.
Роборука — лишь образец успешной технологии. В дополнение к ней её создатели также напечатали роботизированное сердце, шестиногого робота и метаматериал-поглотитель вибраций. Исследователи отметили, что всё это функционирует как гибридные мягко-жёсткие системы, то есть роботы, сочетающие в себе материалы обоих типов. Все они задуманы для превосходства и над исключительно жёсткими, и над полностью мягкими роботами с точки зрения гибкости и для решения свойственных прежним моделям проблем.
Что касается типичных вполне мягких роботов: когда их габариты разняться от миллиметров до сантиметров, ими легко управлять и приводить в движение. Но мягкие роботы из гибких материалов, например эластомеров, не отличаются чёткой геометрией и прочностью, особенно по мере увеличения размеров.
Итак, технология VCJ обладает потенциалом для создания масштабируемых гибридных мягко-жёстких роботов. От лица коллектива инженеров Кацшманн заявил, что VCJ в конечном итоге заменит все другие методы контактной струйной печати. Причём не только роботов: с VCJ также можно начать производство медицинских имплантатов и изделий для прочих отраслей. Высокое разрешение, различные свойства используемых материалов и длительный срок службы делают 3D-печать с помощью системы VCJ очень привлекательными и для учёных, и для коммерческого применения.
- Дмитрий Ладыгин
- arstechnica.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Парадокс Великой Зеленой стены: Китай посадил 78 миллиардов новых деревьев, но климат стал только хуже. Как так вышло?
Ученые назвали причины, почему самый грандиозный экологический проект за всю историю в итоге обернулся головной болью для миллионов китайских граждан...
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Первая «чернокожая британка» оказалась белой: новое исследование заставило историков полностью пересмотреть портрет женщины из Бичи-Хед
Почему ученые так сильно ошиблись с ее внешностью? И стоит ли после этого доверять реконструкциям по ДНК?...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...