Как квантовая батарея способна нарушить законы причинности и зачем это нужно?
В квантовом мире причина не всегда предшествует следствию. Поэтому квантовые батареи могли бы заряжаться более эффективно, обходя традиционные правила причинности.
Юаньбо Чен из Токийского университета и его коллеги проанализировали, может ли особенно противоречивое квантовое явление сыграть роль в питании квантовых батарей устройств аккумулирования энергии, которые могут использовать квантовые эффекты.
Квантовая батарея инновационное устройство, которое основано на сложных квантовых эффектах и способно хранить и передавать энергию. Она состоит из двух ключевых компонентов: квантового источника энергии и квантового накопителя. Квантовый источник может быть любым предметом, способным излучать или поглощать квантовые состояния, такие как фотоны, электроны или атомы. Квантовый накопитель, в свою очередь, представляет собой систему из нескольких квантовых объектов, которые могут сохранять энергию в своих квантовых состояниях. Такие состояния могут быть различными, например, связанными со спином, зарядом, поляризацией или уровнем возбуждения.
Операционный принцип квантовой батареи весьма интересен: квантовый источник энергии излучает или поглощает квантовые состояния, которые затем передаются через специальный квантовый канал к накопителю энергии. Квантовый канал представляет собой среду, которая обеспечивает перемещение квантовых состояний без потерь и взаимодействие между ними. Квантовый накопитель энергии получает квантовые состояния и сохраняет их в своих объектах. Таким образом, энергия передается от источника к накопителю и может быть использована по мере необходимости.

В классическом мире причинность идет только в одном направлении: если событие А вызывает событие Б, то ясно, что В не является также причиной А. Но в квантовом масштабе Чен говорит, что это не всегда так. Существует квантовый эффект, называемый причинно-следственным циклом, когда два события могут быть взаимно причиной и следствием друг друга. Это означает, что порядок причинности может быть неопределенным или даже обратным.
Чен и его коллеги рассмотрели, как этот эффект может быть использован для зарядки квантовых батарей. Они представили себе систему из двух квантовых батарей, которые могут обмениваться энергией между собой. Одна батарея имеет большую емкость, но меньшую скорость зарядки, а другая наоборот. Они связаны с помощью квантового канала, который позволяет передавать энергию в обоих направлениях. Однако в этом канале присутствует природный шум, который вносит неопределенность в порядок причинности. То есть, не всегда ясно, какая батарея заряжает другую, а какая разряжается.
Исследователи показали, что описанная система способна заряжаться быстрее и намного эффективнее, чем если бы порядок причинности был четко определен. Это связано с тем, что природный шум создает дополнительные возможности для обмена энергией, которые не доступны в классическом случае. Таким образом, квантовые батареи способны использовать природную неопределенность в свою пользу, обходя привычные правила причинности.
Это открытие может иметь практическое значение для развития технологий, таких как квантовые компьютеры и квантовая связь. Квантовые батареи могут обеспечить более надежное и эффективное питание для этих устройств, требующих большого количества энергии и чувствительных к внешним воздействиям. Кроме того, квантовые батареи могут способствовать развитию квантовой термодинамики науки, которая изучает тепловые процессы в квантовых системах.
Юаньбо Чен из Токийского университета и его коллеги проанализировали, может ли особенно противоречивое квантовое явление сыграть роль в питании квантовых батарей устройств аккумулирования энергии, которые могут использовать квантовые эффекты.
Квантовая батарея инновационное устройство, которое основано на сложных квантовых эффектах и способно хранить и передавать энергию. Она состоит из двух ключевых компонентов: квантового источника энергии и квантового накопителя. Квантовый источник может быть любым предметом, способным излучать или поглощать квантовые состояния, такие как фотоны, электроны или атомы. Квантовый накопитель, в свою очередь, представляет собой систему из нескольких квантовых объектов, которые могут сохранять энергию в своих квантовых состояниях. Такие состояния могут быть различными, например, связанными со спином, зарядом, поляризацией или уровнем возбуждения.
Операционный принцип квантовой батареи весьма интересен: квантовый источник энергии излучает или поглощает квантовые состояния, которые затем передаются через специальный квантовый канал к накопителю энергии. Квантовый канал представляет собой среду, которая обеспечивает перемещение квантовых состояний без потерь и взаимодействие между ними. Квантовый накопитель энергии получает квантовые состояния и сохраняет их в своих объектах. Таким образом, энергия передается от источника к накопителю и может быть использована по мере необходимости.

В классическом мире причинность идет только в одном направлении: если событие А вызывает событие Б, то ясно, что В не является также причиной А. Но в квантовом масштабе Чен говорит, что это не всегда так. Существует квантовый эффект, называемый причинно-следственным циклом, когда два события могут быть взаимно причиной и следствием друг друга. Это означает, что порядок причинности может быть неопределенным или даже обратным.
Чен и его коллеги рассмотрели, как этот эффект может быть использован для зарядки квантовых батарей. Они представили себе систему из двух квантовых батарей, которые могут обмениваться энергией между собой. Одна батарея имеет большую емкость, но меньшую скорость зарядки, а другая наоборот. Они связаны с помощью квантового канала, который позволяет передавать энергию в обоих направлениях. Однако в этом канале присутствует природный шум, который вносит неопределенность в порядок причинности. То есть, не всегда ясно, какая батарея заряжает другую, а какая разряжается.
Исследователи показали, что описанная система способна заряжаться быстрее и намного эффективнее, чем если бы порядок причинности был четко определен. Это связано с тем, что природный шум создает дополнительные возможности для обмена энергией, которые не доступны в классическом случае. Таким образом, квантовые батареи способны использовать природную неопределенность в свою пользу, обходя привычные правила причинности.
Это открытие может иметь практическое значение для развития технологий, таких как квантовые компьютеры и квантовая связь. Квантовые батареи могут обеспечить более надежное и эффективное питание для этих устройств, требующих большого количества энергии и чувствительных к внешним воздействиям. Кроме того, квантовые батареи могут способствовать развитию квантовой термодинамики науки, которая изучает тепловые процессы в квантовых системах.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...
ДНК из ниоткуда: 6000-летние останки в Колумбии ни с кем совпадают по генам. Вообще.
Если у этих людей нет ни предков, ни потомков, то кто они такие?...
Активность нечеловеческого разума вблизи ядерных объектов США, СССР и Великобритании впервые получила научные доказательства
Критики не смогли опровергнуть работу шведских ученых о странных искусственных аномалиях на орбите...
Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...
Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...
Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...
Ученые наконец-то взломали астрономический код цивилизации майя
700 лет точных предсказаний, 145 солнечных затмений: гениальный способ из древности отлично работает до сих пор...
Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...
2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...
Ученые говорят: вся жизнь подчиняется одному секретному коду
Но почему это древнее ископаемое отказалось следовать ему?...
В ближайшие 100 лет Юпитер «выстрелит» в Землю как минимум 342 раза
Российские ученые рассчитали: ближайшее «прицеливание» состоится уже 2031 году. Что вообще нам ожидать?...
Затонувшие корабли с сокровищами у берегов Китая открывают поразительные факты о Великом морском шелковом пути
Да, это лонгрид! Но после его прочтения ваш взгляд на историю Китая изменится самым коренным образом...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...