
В Японии изобрели «дырокол» и очиститель для графена
Исследователи из Университета Тохоку, Япония, использовали фемтосекундный лазер, то есть работающий со сверхкороткими импульсами, для успешной нанообработки графеновых плёнок. Удалось «просверлить» аккуратные отверстия и при этом удалить загрязняющие вещества.
Открытый в 2004 году графен произвёл революцию в различных областях науки. Эта двумерная модификация углерода обладает замечательными свойствами: высокая подвижность электронов, механическая прочность и отличная теплопроводность. На изучение его возможностей в качестве полупроводникового материала следующего поколения учёные мира затратили много времени и усилий. Результатами стали транзисторы на основе графена, прозрачные электроды и датчики.
Но для практического применения перечисленных устройств крайне важно иметь эффективные технологии обработки. Необходимо структурировать графеновые плёнки в микрометровом и нанометровом масштабе. Как правило, для обработки материалов микро- и наноразмера и изготовления на их основе устройств используют методы нанолитографии и сфокусированного ионного пучка. Однако они требуют громоздкого оборудования, длительного времени изготовления и сложности операций.
Ещё в январе 2023-го исследователи из Университета Тохоку создали технологию, которая позволяет создавать устройства из нитрида кремния толщиной от 5 до 50 нанометров. Они применили фемтосекундный лазер, который излучал чрезвычайно короткие импульсы света. Оказалось, что он способен быстро и эффективно обрабатывать тонкие материалы без вакуумной среды.
Применив этот метод к ультратонкому, атомарному, слою графена, коллектив японских исследователей в итоге преуспел в многоточечном сверлении отверстий без повреждения плёнки. Подробности важного открытия опубликовали в журнале Nano Letters в минувшем мае.
— Юки Уэсуги, доцент Института междисциплинарных исследований передовых материалов Университета Тохоку и соавтор статьи.
Некоторые области графена облучали низкоэнергетическими лазерными импульсами, не проделывая отверстий. При более тщательном изучении обработанных участков с помощью электронного микроскопа Уэсуги и его коллеги обнаружили, что удалили с графена загрязняющие вещества. Дальнейшее наблюдение через микроскоп выявило нанопоры диаметром менее 10 нанометров и дефекты атомарного масштаба, то есть в кристаллических структурах графена отсутствовало несколько атомов углерода.
Атомарные дефекты в графене бывают как вредными, так и полезными, в зависимости от области применения. Хотя дефекты иногда ухудшают определённые свойства, но то они и дефекты, однако изъяны также вносят новые функциональные возможности или улучшают конкретные характеристики.

В ходе опытов заметили тенденцию: плотность нанопор и дефектов увеличивались пропорционально энергии и количеству лазерных выстрелов. Это привело экспериментаторов к выводу, что образованием нанопор и дефектов можно управлять с помощью фемтосекундного лазерного излучения. Формируя в графене нанопоры и дефекты атомарного уровня, можно контролировать не только электропроводность, но и характеристики квантового уровня, такие как вращение и впадина. Более того, удаление загрязнений с помощью фемтосекундного лазерного излучения, обнаруженное в ходе исследования, может привести к разработке нового метода бережной «промывки» графена до высокой чистоты.
Заглядывая в будущее, коллектив учёных стремится усовершенствовать метод очистки с использованием лазера и подробно изучить то, как происходит образование атомных дефектов. Вероятно, дальнейшие успехи окажут большое влияние на исследования квантовых материалов, разработку биосенсоров и так далее.
Открытый в 2004 году графен произвёл революцию в различных областях науки. Эта двумерная модификация углерода обладает замечательными свойствами: высокая подвижность электронов, механическая прочность и отличная теплопроводность. На изучение его возможностей в качестве полупроводникового материала следующего поколения учёные мира затратили много времени и усилий. Результатами стали транзисторы на основе графена, прозрачные электроды и датчики.
Но для практического применения перечисленных устройств крайне важно иметь эффективные технологии обработки. Необходимо структурировать графеновые плёнки в микрометровом и нанометровом масштабе. Как правило, для обработки материалов микро- и наноразмера и изготовления на их основе устройств используют методы нанолитографии и сфокусированного ионного пучка. Однако они требуют громоздкого оборудования, длительного времени изготовления и сложности операций.
Ещё в январе 2023-го исследователи из Университета Тохоку создали технологию, которая позволяет создавать устройства из нитрида кремния толщиной от 5 до 50 нанометров. Они применили фемтосекундный лазер, который излучал чрезвычайно короткие импульсы света. Оказалось, что он способен быстро и эффективно обрабатывать тонкие материалы без вакуумной среды.
Применив этот метод к ультратонкому, атомарному, слою графена, коллектив японских исследователей в итоге преуспел в многоточечном сверлении отверстий без повреждения плёнки. Подробности важного открытия опубликовали в журнале Nano Letters в минувшем мае.
При надлежащем контроле за источником энергии и количеством лазерных выстрелов мы смогли выполнить точную обработку и создать отверстия диаметром от 70 нанометров до более чем 1 миллиметра. А длина волны лазера была 520 нанометров
— Юки Уэсуги, доцент Института междисциплинарных исследований передовых материалов Университета Тохоку и соавтор статьи.
Некоторые области графена облучали низкоэнергетическими лазерными импульсами, не проделывая отверстий. При более тщательном изучении обработанных участков с помощью электронного микроскопа Уэсуги и его коллеги обнаружили, что удалили с графена загрязняющие вещества. Дальнейшее наблюдение через микроскоп выявило нанопоры диаметром менее 10 нанометров и дефекты атомарного масштаба, то есть в кристаллических структурах графена отсутствовало несколько атомов углерода.
Атомарные дефекты в графене бывают как вредными, так и полезными, в зависимости от области применения. Хотя дефекты иногда ухудшают определённые свойства, но то они и дефекты, однако изъяны также вносят новые функциональные возможности или улучшают конкретные характеристики.

В ходе опытов заметили тенденцию: плотность нанопор и дефектов увеличивались пропорционально энергии и количеству лазерных выстрелов. Это привело экспериментаторов к выводу, что образованием нанопор и дефектов можно управлять с помощью фемтосекундного лазерного излучения. Формируя в графене нанопоры и дефекты атомарного уровня, можно контролировать не только электропроводность, но и характеристики квантового уровня, такие как вращение и впадина. Более того, удаление загрязнений с помощью фемтосекундного лазерного излучения, обнаруженное в ходе исследования, может привести к разработке нового метода бережной «промывки» графена до высокой чистоты.
Заглядывая в будущее, коллектив учёных стремится усовершенствовать метод очистки с использованием лазера и подробно изучить то, как происходит образование атомных дефектов. Вероятно, дальнейшие успехи окажут большое влияние на исследования квантовых материалов, разработку биосенсоров и так далее.
- Дмитрий Ладыгин
- scitechdaily.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...