ВСЛУХ

В Японии изобрели «дырокол» и очиститель для графена

В Японии изобрели «дырокол» и очиститель для графена
Исследователи из Университета Тохоку, Япония, использовали фемтосекундный лазер, то есть работающий со сверхкороткими импульсами, для успешной нанообработки графеновых плёнок. Удалось «просверлить» аккуратные отверстия и при этом удалить загрязняющие вещества.


Открытый в 2004 году графен произвёл революцию в различных областях науки. Эта двумерная модификация углерода обладает замечательными свойствами: высокая подвижность электронов, механическая прочность и отличная теплопроводность. На изучение его возможностей в качестве полупроводникового материала следующего поколения учёные мира затратили много времени и усилий. Результатами стали транзисторы на основе графена, прозрачные электроды и датчики.

Но для практического применения перечисленных устройств крайне важно иметь эффективные технологии обработки. Необходимо структурировать графеновые плёнки в микрометровом и нанометровом масштабе. Как правило, для обработки материалов микро- и наноразмера и изготовления на их основе устройств используют методы нанолитографии и сфокусированного ионного пучка. Однако они требуют громоздкого оборудования, длительного времени изготовления и сложности операций.

Ещё в январе 2023-го исследователи из Университета Тохоку создали технологию, которая позволяет создавать устройства из нитрида кремния толщиной от 5 до 50 нанометров. Они применили фемтосекундный лазер, который излучал чрезвычайно короткие импульсы света. Оказалось, что он способен быстро и эффективно обрабатывать тонкие материалы без вакуумной среды.

Применив этот метод к ультратонкому, атомарному, слою графена, коллектив японских исследователей в итоге преуспел в многоточечном сверлении отверстий без повреждения плёнки. Подробности важного открытия опубликовали в журнале Nano Letters в минувшем мае.

При надлежащем контроле за источником энергии и количеством лазерных выстрелов мы смогли выполнить точную обработку и создать отверстия диаметром от 70 нанометров до более чем 1 миллиметра. А длина волны лазера была 520 нанометров

— Юки Уэсуги, доцент Института междисциплинарных исследований передовых материалов Университета Тохоку и соавтор статьи.

Некоторые области графена облучали низкоэнергетическими лазерными импульсами, не проделывая отверстий. При более тщательном изучении обработанных участков с помощью электронного микроскопа Уэсуги и его коллеги обнаружили, что удалили с графена загрязняющие вещества. Дальнейшее наблюдение через микроскоп выявило нанопоры диаметром менее 10 нанометров и дефекты атомарного масштаба, то есть в кристаллических структурах графена отсутствовало несколько атомов углерода.

Атомарные дефекты в графене бывают как вредными, так и полезными, в зависимости от области применения. Хотя дефекты иногда ухудшают определённые свойства, но то они и дефекты, однако изъяны также вносят новые функциональные возможности или улучшают конкретные характеристики.

В Японии изобрели «дырокол» и очиститель для графена


В ходе опытов заметили тенденцию: плотность нанопор и дефектов увеличивались пропорционально энергии и количеству лазерных выстрелов. Это привело экспериментаторов к выводу, что образованием нанопор и дефектов можно управлять с помощью фемтосекундного лазерного излучения. Формируя в графене нанопоры и дефекты атомарного уровня, можно контролировать не только электропроводность, но и характеристики квантового уровня, такие как вращение и впадина. Более того, удаление загрязнений с помощью фемтосекундного лазерного излучения, обнаруженное в ходе исследования, может привести к разработке нового метода бережной «промывки» графена до высокой чистоты.

Заглядывая в будущее, коллектив учёных стремится усовершенствовать метод очистки с использованием лазера и подробно изучить то, как происходит образование атомных дефектов. Вероятно, дальнейшие успехи окажут большое влияние на исследования квантовых материалов, разработку биосенсоров и так далее.

Автор:

Использованы фотографии: scitechdaily.com

Мы в Мы в Яндекс Дзен
Двуслойный графен: Квантовый туннельный переход к российской электронике будущегоДвухслойный графен из МФТИ: материал будущего для детектирования терагерцового излучения