В Японии изобрели «дырокол» и очиститель для графена
Исследователи из Университета Тохоку, Япония, использовали фемтосекундный лазер, то есть работающий со сверхкороткими импульсами, для успешной нанообработки графеновых плёнок. Удалось «просверлить» аккуратные отверстия и при этом удалить загрязняющие вещества.
Открытый в 2004 году графен произвёл революцию в различных областях науки. Эта двумерная модификация углерода обладает замечательными свойствами: высокая подвижность электронов, механическая прочность и отличная теплопроводность. На изучение его возможностей в качестве полупроводникового материала следующего поколения учёные мира затратили много времени и усилий. Результатами стали транзисторы на основе графена, прозрачные электроды и датчики.
Но для практического применения перечисленных устройств крайне важно иметь эффективные технологии обработки. Необходимо структурировать графеновые плёнки в микрометровом и нанометровом масштабе. Как правило, для обработки материалов микро- и наноразмера и изготовления на их основе устройств используют методы нанолитографии и сфокусированного ионного пучка. Однако они требуют громоздкого оборудования, длительного времени изготовления и сложности операций.
Ещё в январе 2023-го исследователи из Университета Тохоку создали технологию, которая позволяет создавать устройства из нитрида кремния толщиной от 5 до 50 нанометров. Они применили фемтосекундный лазер, который излучал чрезвычайно короткие импульсы света. Оказалось, что он способен быстро и эффективно обрабатывать тонкие материалы без вакуумной среды.
Применив этот метод к ультратонкому, атомарному, слою графена, коллектив японских исследователей в итоге преуспел в многоточечном сверлении отверстий без повреждения плёнки. Подробности важного открытия опубликовали в журнале Nano Letters в минувшем мае.
— Юки Уэсуги, доцент Института междисциплинарных исследований передовых материалов Университета Тохоку и соавтор статьи.
Некоторые области графена облучали низкоэнергетическими лазерными импульсами, не проделывая отверстий. При более тщательном изучении обработанных участков с помощью электронного микроскопа Уэсуги и его коллеги обнаружили, что удалили с графена загрязняющие вещества. Дальнейшее наблюдение через микроскоп выявило нанопоры диаметром менее 10 нанометров и дефекты атомарного масштаба, то есть в кристаллических структурах графена отсутствовало несколько атомов углерода.
Атомарные дефекты в графене бывают как вредными, так и полезными, в зависимости от области применения. Хотя дефекты иногда ухудшают определённые свойства, но то они и дефекты, однако изъяны также вносят новые функциональные возможности или улучшают конкретные характеристики.

В ходе опытов заметили тенденцию: плотность нанопор и дефектов увеличивались пропорционально энергии и количеству лазерных выстрелов. Это привело экспериментаторов к выводу, что образованием нанопор и дефектов можно управлять с помощью фемтосекундного лазерного излучения. Формируя в графене нанопоры и дефекты атомарного уровня, можно контролировать не только электропроводность, но и характеристики квантового уровня, такие как вращение и впадина. Более того, удаление загрязнений с помощью фемтосекундного лазерного излучения, обнаруженное в ходе исследования, может привести к разработке нового метода бережной «промывки» графена до высокой чистоты.
Заглядывая в будущее, коллектив учёных стремится усовершенствовать метод очистки с использованием лазера и подробно изучить то, как происходит образование атомных дефектов. Вероятно, дальнейшие успехи окажут большое влияние на исследования квантовых материалов, разработку биосенсоров и так далее.
Открытый в 2004 году графен произвёл революцию в различных областях науки. Эта двумерная модификация углерода обладает замечательными свойствами: высокая подвижность электронов, механическая прочность и отличная теплопроводность. На изучение его возможностей в качестве полупроводникового материала следующего поколения учёные мира затратили много времени и усилий. Результатами стали транзисторы на основе графена, прозрачные электроды и датчики.
Но для практического применения перечисленных устройств крайне важно иметь эффективные технологии обработки. Необходимо структурировать графеновые плёнки в микрометровом и нанометровом масштабе. Как правило, для обработки материалов микро- и наноразмера и изготовления на их основе устройств используют методы нанолитографии и сфокусированного ионного пучка. Однако они требуют громоздкого оборудования, длительного времени изготовления и сложности операций.
Ещё в январе 2023-го исследователи из Университета Тохоку создали технологию, которая позволяет создавать устройства из нитрида кремния толщиной от 5 до 50 нанометров. Они применили фемтосекундный лазер, который излучал чрезвычайно короткие импульсы света. Оказалось, что он способен быстро и эффективно обрабатывать тонкие материалы без вакуумной среды.
Применив этот метод к ультратонкому, атомарному, слою графена, коллектив японских исследователей в итоге преуспел в многоточечном сверлении отверстий без повреждения плёнки. Подробности важного открытия опубликовали в журнале Nano Letters в минувшем мае.
При надлежащем контроле за источником энергии и количеством лазерных выстрелов мы смогли выполнить точную обработку и создать отверстия диаметром от 70 нанометров до более чем 1 миллиметра. А длина волны лазера была 520 нанометров
— Юки Уэсуги, доцент Института междисциплинарных исследований передовых материалов Университета Тохоку и соавтор статьи.
Некоторые области графена облучали низкоэнергетическими лазерными импульсами, не проделывая отверстий. При более тщательном изучении обработанных участков с помощью электронного микроскопа Уэсуги и его коллеги обнаружили, что удалили с графена загрязняющие вещества. Дальнейшее наблюдение через микроскоп выявило нанопоры диаметром менее 10 нанометров и дефекты атомарного масштаба, то есть в кристаллических структурах графена отсутствовало несколько атомов углерода.
Атомарные дефекты в графене бывают как вредными, так и полезными, в зависимости от области применения. Хотя дефекты иногда ухудшают определённые свойства, но то они и дефекты, однако изъяны также вносят новые функциональные возможности или улучшают конкретные характеристики.

В ходе опытов заметили тенденцию: плотность нанопор и дефектов увеличивались пропорционально энергии и количеству лазерных выстрелов. Это привело экспериментаторов к выводу, что образованием нанопор и дефектов можно управлять с помощью фемтосекундного лазерного излучения. Формируя в графене нанопоры и дефекты атомарного уровня, можно контролировать не только электропроводность, но и характеристики квантового уровня, такие как вращение и впадина. Более того, удаление загрязнений с помощью фемтосекундного лазерного излучения, обнаруженное в ходе исследования, может привести к разработке нового метода бережной «промывки» графена до высокой чистоты.
Заглядывая в будущее, коллектив учёных стремится усовершенствовать метод очистки с использованием лазера и подробно изучить то, как происходит образование атомных дефектов. Вероятно, дальнейшие успехи окажут большое влияние на исследования квантовых материалов, разработку биосенсоров и так далее.
- Дмитрий Ладыгин
- scitechdaily.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Загадочный взрыв над Москвой: зачем NASA срочно удалило все данные об объекте 2025 US6?
И почему эксперты говорят, что мы никогда не узнаем правды?...
Активность нечеловеческого разума вблизи ядерных объектов США, СССР и Великобритании впервые получила научные доказательства
Критики не смогли опровергнуть работу шведских ученых о странных искусственных аномалиях на орбите...
Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...
Ученые наконец-то взломали астрономический код цивилизации майя
700 лет точных предсказаний, 145 солнечных затмений: гениальный способ из древности отлично работает до сих пор...
«Парящие» берлоги: Как треугольные дома помогут России удержать Арктику
Кто победит? Глобальное изменение климата или новые технологии?...
Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...
Российские ученые создали уникальный материал будущего: новый металл прочнее любой стали, но дешевле даже алюминия
Мир высоких технологий ждал этого открытия десятилетия. Наша страна получила реальный шанс стать лидером металлургии...
Ученые говорят: вся жизнь подчиняется одному секретному коду
Но почему это древнее ископаемое отказалось следовать ему?...
Затонувшие корабли с сокровищами у берегов Китая открывают поразительные факты о Великом морском шелковом пути
Да, это лонгрид! Но после его прочтения ваш взгляд на историю Китая изменится самым коренным образом...
Тающий лед Антарктиды прячет от нас глубинную «бомбу» замедленного действия
Неожиданный климатический парадокс: малая беда хранит человечество от большой. Но это ненадолго...
Эксперимент показал, что на самом деле творится под марсианскими дюнами каждую весну
Оказалось, что с наступлением тепла на Красной планете активизируются... ледяные «кроты»...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...
1300 лет назад неизвестные грабители вскрыли гробницу знатного воина, но вообще не тронули сокровищ. Почему?
Венгерские археологи уверены, что разгадали этот мистический детектив. Но так ли это на самом деле?...