
Световые крючки из льда и воды
Свет — одно из самых удивительных и многогранных явлений природы. С его помощью мы можем видеть окружающий мир, передавать информацию, исследовать микроскопические объекты, лечить болезни и многое другое. Свет может изгибаться и преломляться под воздействием различных сред. Например, когда мы смотрим на ложку в стакане с водой, она кажется нам сломанной из-за преломления света на границе воздух-вода. А когда мы наблюдаем радугу на небе, мы видим разложение белого света на спектральные цвета из-за преломления света в каплях дождя.
Но есть еще один способ изгибать свет, который был открыт сравнительно недавно — с помощью фотонных крючков. Фотонный крючок — это особый вид светового луча, который имеет очень маленький радиус кривизны и может изгибаться в пространстве под большим углом. Такой луч создается при прохождении света через маленькую диэлектрическую частицу (например, стеклянный шарик), который имеет асимметричную форму. В тени от такой частицы происходит интерференция (наложение) преломленных, дифрагированных и рассеянных волн, которая и формирует фотонный крючок.
Фотонные крючки были предсказаны теоретически в 2015 году и экспериментально продемонстрированы в 2018 году. Они представляют большой интерес для науки и техники, так как могут быть использованы для управления светом на микро- и нано-уровне. Например, фотонные крючки могут помочь в создании оптических переключателей, микроскопов, сенсоров, материалов с необычными свойствами, биомедицинских приборов и т. д.
Однако фотонные крючки имеют один недостаток — они статичны, то есть не могут менять свою форму и траекторию во времени. Чтобы сделать их более гибкими и управляемыми, нужно использовать специальные устройства или материалы, которые могут изменять свою оптическую структуру под воздействием электричества, магнетизма или температуры. Но такие методы обычно сложны, дороги и неэкологичны.
Недавно группа ученых из России и Китая предложила новый способ создания фотонных крючков, которые могут менять свою форму и траекторию во времени. Для этого они использовали каплю замерзающей воды, которая является натуральным, дешевым и экологически чистым материалом. Капля воды была помещена на холодную поверхность и освещена лазерным лучом. При замерзании капля меняла свою форму и преломляющую способность, что влияло на изгибание света. Таким образом, ученые смогли получить фотонный крючок, который изгибался во времени и имел большой радиус кривизны. Они также показали, что можно управлять свойствами фотонного крючка, меняя положение и кривизну границы между водой и льдом внутри капли.
Это исследование открывает новые возможности для управления светом с помощью простых и доступных материалов. Возможно, в будущем мы сможем создавать фотонные крючки из разных жидкостей или газов, которые замерзают или конденсируются при разных условиях. Такие световые лучи могут найти применение во многих областях науки и техники, где требуется высокая точность и гибкость управления светом.
Это открытие может быть полезным на практике в тех областях, где нужно управлять светом на малых расстояниях и в динамических условиях. Например, фотонные крючки могут быть использованы для оптического переключения и манипуляции микро- и нано-объектов. Фотонные крючки могут переносить информацию или энергию между разными точками в оптических схемах или устройствах.
Но есть еще один способ изгибать свет, который был открыт сравнительно недавно — с помощью фотонных крючков. Фотонный крючок — это особый вид светового луча, который имеет очень маленький радиус кривизны и может изгибаться в пространстве под большим углом. Такой луч создается при прохождении света через маленькую диэлектрическую частицу (например, стеклянный шарик), который имеет асимметричную форму. В тени от такой частицы происходит интерференция (наложение) преломленных, дифрагированных и рассеянных волн, которая и формирует фотонный крючок.
Фотонные крючки были предсказаны теоретически в 2015 году и экспериментально продемонстрированы в 2018 году. Они представляют большой интерес для науки и техники, так как могут быть использованы для управления светом на микро- и нано-уровне. Например, фотонные крючки могут помочь в создании оптических переключателей, микроскопов, сенсоров, материалов с необычными свойствами, биомедицинских приборов и т. д.
Однако фотонные крючки имеют один недостаток — они статичны, то есть не могут менять свою форму и траекторию во времени. Чтобы сделать их более гибкими и управляемыми, нужно использовать специальные устройства или материалы, которые могут изменять свою оптическую структуру под воздействием электричества, магнетизма или температуры. Но такие методы обычно сложны, дороги и неэкологичны.
Недавно группа ученых из России и Китая предложила новый способ создания фотонных крючков, которые могут менять свою форму и траекторию во времени. Для этого они использовали каплю замерзающей воды, которая является натуральным, дешевым и экологически чистым материалом. Капля воды была помещена на холодную поверхность и освещена лазерным лучом. При замерзании капля меняла свою форму и преломляющую способность, что влияло на изгибание света. Таким образом, ученые смогли получить фотонный крючок, который изгибался во времени и имел большой радиус кривизны. Они также показали, что можно управлять свойствами фотонного крючка, меняя положение и кривизну границы между водой и льдом внутри капли.
Это исследование открывает новые возможности для управления светом с помощью простых и доступных материалов. Возможно, в будущем мы сможем создавать фотонные крючки из разных жидкостей или газов, которые замерзают или конденсируются при разных условиях. Такие световые лучи могут найти применение во многих областях науки и техники, где требуется высокая точность и гибкость управления светом.
Это открытие может быть полезным на практике в тех областях, где нужно управлять светом на малых расстояниях и в динамических условиях. Например, фотонные крючки могут быть использованы для оптического переключения и манипуляции микро- и нано-объектов. Фотонные крючки могут переносить информацию или энергию между разными точками в оптических схемах или устройствах.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...

Камни, растущие из пола в мексиканской пещере, пролили свет на загадочное крушение империи майя
Оказалось, что 13 роковых лет климатического беспредела нанесли смертельный удар величайшей цивилизации Центральной Америки...

Почему открытие «темного кислорода» на 4000-метровой глубине вызвало яростные споры между учеными и добывающими компаниями?
И как это поможет нам найти жизнь на других планетах?...