Электронный «жук-носорог» с пинцетом выполнит точную работу в экстремальных условиях
Инженеры из Национального университета Йокогамы создали миниатюрного автономного робота, который способен действовать с максимальной точностью в самых экстремальных либо стеснённых условиях. Изобретению дали название «Holonomic Beetle 3» («Голономный жук 3»), или HB-3.
Голономный робот в принципе — это устройство, которое может двигаться в любом направлении на плоскости без необходимости предварительно разворачиваться. Простыми словами, он может ехать вперед, назад, вбок и вращаться на месте, как угодно, благодаря специальным механизмам. Представим себе машинку на радиоуправлении, которая может мгновенно поехать вбок, не разворачиваясь, — это и есть голономный робот. Такие роботы часто используются там, где нужна высокая манёвренность, например, для решения задач складской логистики.
HB-3 рассчитан на то, чтобы удовлетворить возрастающую потребность в точных манипуляциях среди различных отраслей, включая автоматизацию лабораторий, медпроцедуры и научные исследования. Устройство было бы полезно при работе и с наноматериалами, и с клетками живых тканей, и при сборке микросхем, в общем, там, где присутствие человека нежелательно либо просто невозможно. Особенно актуально это в вакуумных средах, в особо чистых помещениях, в биозащищённых камерах и так далее.

HB-3 создан по примеру анатомии и двигательных способностей жука-носорога, сочетая в себе пьезоэлектрические приводы с автономной технологией, позволяющей осуществлять микроскопические манипуляции.
Пьезоэлектрические приводы — это устройства, которые преобразуют электрическую энергию в механическое движение с помощью пьезоэлектрического эффекта. Простыми словами, это такие «двигатели», которые работают за счёт специальных материалов (пьезоэлектриков), немного изменяющих свою форму, когда к ним прикладывают электрическое напряжение. Пьезоэлектриками служат, например, кварц или керамика, которые сжимаются или расширяются, когда на них подают электроток. Происходящие крошечные движения используются для точного и контролируемого перемещения в пространстве.
За последние годы автономные роботы стали использоваться в различных отраслях промышленности, на местах стихийных бедствий, в медицине и в замкнутых пространствах, куда нет доступа людям. В то же время полным ходом идёт миниатюризация электронных составляющих и для таких устройств в том числе. Так, специалисты работают над созданием микроскопических узлов в виде батарей и суперконденсаторов толщиной всего в несколько микрон.
Обычные устройства описанного выше предназначения оставались громоздкими и тяжёлыми по сравнению с уже появившимися на рынке крошечными деталями. В общем, оставалось много возможностей для совершенствования роботизированной электроники с точки зрения энергоэффективности и экономии места. Даже если бы управляющие схемы и аккумуляторы стали предельно крошечными, их диапазон и свобода действий всё равно были бы сильно ограничены несоответствием прочих компонентов.
Для решения таких задач различные специалисты придумывали всяческие прецизионные (высокоточные) приводы — по сути, «мышцы» робота, которые преобразуют электрическую, гидравлическую или пневматическую энергию в движение. В частности, как очень перспективные для таких целей проявили себя пьезоэлектрические приводы.
Наблюдается общая тенденция к созданию всё более миниатюрных роботов и соответственно маленьких захватов-манипуляторов. Однако до сих пор не удавалось построить передвижные манипуляторы, которые бы выполняли операции на мирокуровне и при этом объединяли бы в себе пьезоэлектрические приводные технологии, были бы автономными и применимыми в реальных условиях.
Конструкция HB-3 получилась компактной и лёгкой — массой всего 515 граммов и 10 куб. см в объёме. Интегрированная схема управления на базе одноплатного компьютера устранила проблемы, которые возникали в предшествующих исследованиях тех же робототехников из-за электропроводов. HB-3 также оснащён встроенной камерой и выполняет задачи с помощью алгоритмов машинного обучения, которые позволяют ему без малейших промедлений корректировать движения. Следует отметить, что последняя функция отсутствует в предыдущих манипуляторах такого уровня.

В ходе дотошных испытаний HB-3 показал впечатляющие результаты при выполнении задач в тесном пространстве с использованием различных инструментов. Например, робот функционировал как точный пинцет для захвата и размещения микросхем или инжектор (подающий элемент) для нанесения крошечных капель. При этом точность была в пределах десятых и сотых долей миллиметра, а 87% задач были выполнены успешно.
Изобретатели утверждают, что на базе HB-3 можно создать различные прецизионные инструменты: измерительные щупы, паяльники, отвёртки и другие очень точные приспособления по мере необходимости и в различных масштабах — от метра до нанометра.
Один из разработчиков компактной машины Оми Футиваки, доцент инженерного факультета, заявил, что они с коллегами смогли повысить миниатюрность, чтобы воплотить в реальность не привязанное к чему-либо устройство для работ в тесных и опасных пространствах.
— Футиваки.
Инженеры из Йокогамы планируют доработать своего маленького «жука». Они считают, что скорость обработки данных HB-3, зависящую от процессора Raspberry Pi, можно увеличить. А время, которое требуется роботу для обнаружения объектов, удастся сократить за счёт передачи функции по обнаружению целей на внешний высокопроизводительный компьютер.
В дальнейшем исследователи также планируют повысить скорость и точность робота. В частности, инженеры хотят встроить камеры бокового и верхнего обзора для большей аккуратности позиционирования.
Голономный робот в принципе — это устройство, которое может двигаться в любом направлении на плоскости без необходимости предварительно разворачиваться. Простыми словами, он может ехать вперед, назад, вбок и вращаться на месте, как угодно, благодаря специальным механизмам. Представим себе машинку на радиоуправлении, которая может мгновенно поехать вбок, не разворачиваясь, — это и есть голономный робот. Такие роботы часто используются там, где нужна высокая манёвренность, например, для решения задач складской логистики.
HB-3 рассчитан на то, чтобы удовлетворить возрастающую потребность в точных манипуляциях среди различных отраслей, включая автоматизацию лабораторий, медпроцедуры и научные исследования. Устройство было бы полезно при работе и с наноматериалами, и с клетками живых тканей, и при сборке микросхем, в общем, там, где присутствие человека нежелательно либо просто невозможно. Особенно актуально это в вакуумных средах, в особо чистых помещениях, в биозащищённых камерах и так далее.

HB-3 создан по примеру анатомии и двигательных способностей жука-носорога, сочетая в себе пьезоэлектрические приводы с автономной технологией, позволяющей осуществлять микроскопические манипуляции.
Пьезоэлектрические приводы — это устройства, которые преобразуют электрическую энергию в механическое движение с помощью пьезоэлектрического эффекта. Простыми словами, это такие «двигатели», которые работают за счёт специальных материалов (пьезоэлектриков), немного изменяющих свою форму, когда к ним прикладывают электрическое напряжение. Пьезоэлектриками служат, например, кварц или керамика, которые сжимаются или расширяются, когда на них подают электроток. Происходящие крошечные движения используются для точного и контролируемого перемещения в пространстве.
За последние годы автономные роботы стали использоваться в различных отраслях промышленности, на местах стихийных бедствий, в медицине и в замкнутых пространствах, куда нет доступа людям. В то же время полным ходом идёт миниатюризация электронных составляющих и для таких устройств в том числе. Так, специалисты работают над созданием микроскопических узлов в виде батарей и суперконденсаторов толщиной всего в несколько микрон.
Обычные устройства описанного выше предназначения оставались громоздкими и тяжёлыми по сравнению с уже появившимися на рынке крошечными деталями. В общем, оставалось много возможностей для совершенствования роботизированной электроники с точки зрения энергоэффективности и экономии места. Даже если бы управляющие схемы и аккумуляторы стали предельно крошечными, их диапазон и свобода действий всё равно были бы сильно ограничены несоответствием прочих компонентов.
Для решения таких задач различные специалисты придумывали всяческие прецизионные (высокоточные) приводы — по сути, «мышцы» робота, которые преобразуют электрическую, гидравлическую или пневматическую энергию в движение. В частности, как очень перспективные для таких целей проявили себя пьезоэлектрические приводы.
Наблюдается общая тенденция к созданию всё более миниатюрных роботов и соответственно маленьких захватов-манипуляторов. Однако до сих пор не удавалось построить передвижные манипуляторы, которые бы выполняли операции на мирокуровне и при этом объединяли бы в себе пьезоэлектрические приводные технологии, были бы автономными и применимыми в реальных условиях.
Конструкция HB-3 получилась компактной и лёгкой — массой всего 515 граммов и 10 куб. см в объёме. Интегрированная схема управления на базе одноплатного компьютера устранила проблемы, которые возникали в предшествующих исследованиях тех же робототехников из-за электропроводов. HB-3 также оснащён встроенной камерой и выполняет задачи с помощью алгоритмов машинного обучения, которые позволяют ему без малейших промедлений корректировать движения. Следует отметить, что последняя функция отсутствует в предыдущих манипуляторах такого уровня.

В ходе дотошных испытаний HB-3 показал впечатляющие результаты при выполнении задач в тесном пространстве с использованием различных инструментов. Например, робот функционировал как точный пинцет для захвата и размещения микросхем или инжектор (подающий элемент) для нанесения крошечных капель. При этом точность была в пределах десятых и сотых долей миллиметра, а 87% задач были выполнены успешно.
Изобретатели утверждают, что на базе HB-3 можно создать различные прецизионные инструменты: измерительные щупы, паяльники, отвёртки и другие очень точные приспособления по мере необходимости и в различных масштабах — от метра до нанометра.
Один из разработчиков компактной машины Оми Футиваки, доцент инженерного факультета, заявил, что они с коллегами смогли повысить миниатюрность, чтобы воплотить в реальность не привязанное к чему-либо устройство для работ в тесных и опасных пространствах.
HB-3 может не только выполнять сложные задачи, но и делать это с непревзойдённой точностью
— Футиваки.
Инженеры из Йокогамы планируют доработать своего маленького «жука». Они считают, что скорость обработки данных HB-3, зависящую от процессора Raspberry Pi, можно увеличить. А время, которое требуется роботу для обнаружения объектов, удастся сократить за счёт передачи функции по обнаружению целей на внешний высокопроизводительный компьютер.
В дальнейшем исследователи также планируют повысить скорость и точность робота. В частности, инженеры хотят встроить камеры бокового и верхнего обзора для большей аккуратности позиционирования.
- Дмитрий Ладыгин
- advanced.onlinelibrary.wiley.com; fuchilab.ynu.ac.jp
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Главный охотник за лох-несским чудовищем потряс широкую публику своим заявлением
Никто и не ожидал, что 52 года постоянных поисков завершатся именно так...
Росархив рассекретил документы: Доказано, что именно Польша не дала СССР остановить Вторую мировую войну
Об этом в 1939 году сообщали из Варшавы французские дипломаты и разведчики...
В советских газетах снова нашлось предсказание будущего: Что же на этот раз?
Оказалось, что еще в 1948 году «Московский большевик» написал о планах США захватить Гренландию...
Случайное открытие поразило ученых: на Памире обнаружен аномальный ледник, который не тает, а, наоборот, растет
Почему исследователи надеются, что в итоге их проект поможет абсолютно всем людям на планете?...
Главная идея фильма «Парк юрского периода», которую наука считала фантастикой, оказалась очень даже реальной
Похоже, ученым придется извиниться перед комарами: кровососы действительно переносят чужие ДНК...
И разверзлись бездны в небе: Эксперты рассказали, может ли космический холод заморозить Землю
От мамонтов в вечной мерзлоте до «моментального» замерзания городов: что наука реально знает о сверхморозах и при чем здесь полярный вихрь?...
Ученые сильно недооценивали древних охотников: уже 60 000 лет назад они использовали «умный» яд
Почему эксперты говорят, что были не просто отравленные стрелы, а первое в истории высокотехнологичное оружие?...
Почему вирусы в космосе ведут себя странно, а поведение их вообще не предсказуемо?
Новые эксперименты на МКС выявили такие поразительные аномалии. Но ученые только рады этому...
Тесла снова меняет правила игры: генератор по проекту гения выжимает электричество из воздуха
Эксперты говорят, что мы только сейчас доросли до великого изобретателя. Из 300 его открытий реализованы лишь десятки. Что еще может скрываться в архивах?...
Еще одна загадка Древнего Рима: Что делали верблюды-гибриды в сердце Европы?
Эксперты говорят: новое открытие может серьезно переписать историю поздней Римской империи...
Почему компонент сыра, который используется уже 30 лет, вызвал внезапную панику у американцев?
Эксперты рассказали: используется ли это вещество в России и стоит ли нам волноваться...
Удивительные и невероятные приключения первой советской ракеты класса «воздух-воздух»
Военные историки говорят: без якутских мастеров советские конструкторы не смогли бы «взломать» американскую ракету и построить нашу Р-3...