
Нейронная сеть учится строить карты с помощью Minecraft
Представьте, что вы находитесь посреди неизвестного города. Не страшно, ведь даже если местность изначально незнакома, вы можете исследовать её и, в конечном итоге, создать у себя в голове ментальную карту: где находятся здания, улицы, знаки и так далее относительно друг друга. Эта способность строить пространственные карты в мозгу является основой для ещё более сложных видов познавательной деятельности у людей. Например, считается, что язык кодируется в мозге в виде картоподобной структуры.
Несмотря на все возможности передового искусственного интеллекта нейронных сетей, они не способны создавать карты с нуля.
Существует мнение, что даже самые современные модели искусственного интеллекта по-прежнему не являются запредельно продвинутыми. Они не решают задачи так, как мы и не могут доказывать недоказанные математические результаты или генерировать новые идеи.
— Мэтт Томсон, доцент кафедры вычислительной биологии и исследователь Heritage Medical Research Institute.
Недавнее исследование из лаборатории Томсона показывает, что нейронные сети могут быть спроектированы для создания пространственных карт с использованием алгоритма, называемого предиктивным кодированием. Статья была опубликована в журнале Nature Machine Intelligence 18 июля.
Вместе с аспирантом Джеймсом Горнетом они создали окружение в игре Minecraft, включая сложные элементы, такие как деревья, реки и пещеры. Ученые записали видео с действиями игрока, случайно перемещающегося по сгенерированной области, и использовали ролик для обучения нейронной сети на основе алгоритма предиктивного кодирования.
Так было обнаружено, что нейронная сеть способна узнавать, как объекты в мире Minecraft организованы относительно друг друга, и «предсказывать», какие элементы окружения будут возникать дальше при движении по пространству.
Более того, команда открыла исходный код нейронной сети и увидела, что представления о различных объектах хранятся пространственно относительно друг друга. Другими словами, они увидели карту окружения Minecraft, сохраненную внутри нейронной сети.
Нейронные сети могут ориентироваться по картам, предоставленным человеком, например, в случае автомобиля с системой GPS. Однако впервые нейронная сеть оказалась способна создавать свою собственную карту. Эта способность пространственно хранить и организовывать информацию может в конечном итоге помочь нейронным сетям становиться «умнее», позволяя им решать действительно сложные задачи, так же как это делают люди.
Подход, основанный на биологической аналогии, позволит исследователям лучше понять работу мозга и применить новое знание для улучшения искусственных нейронных сетей. В итоге это позволит найти новые способы решения сложных задач, которые ранее были недоступны для искусственного интеллекта.
Несмотря на все возможности передового искусственного интеллекта нейронных сетей, они не способны создавать карты с нуля.
Существует мнение, что даже самые современные модели искусственного интеллекта по-прежнему не являются запредельно продвинутыми. Они не решают задачи так, как мы и не могут доказывать недоказанные математические результаты или генерировать новые идеи.
Это связано с тем, что они не могут ориентироваться в концептуальном пространстве. Решение сложных проблем подобно перемещению в пространстве концепций. Искусственные интеллекты больше похожи на механическое запоминание: вы даёте им входные данные, и они дают вам ответ. Но они не способны синтезировать разнородные идеи
— Мэтт Томсон, доцент кафедры вычислительной биологии и исследователь Heritage Medical Research Institute.
Недавнее исследование из лаборатории Томсона показывает, что нейронные сети могут быть спроектированы для создания пространственных карт с использованием алгоритма, называемого предиктивным кодированием. Статья была опубликована в журнале Nature Machine Intelligence 18 июля.
Вместе с аспирантом Джеймсом Горнетом они создали окружение в игре Minecraft, включая сложные элементы, такие как деревья, реки и пещеры. Ученые записали видео с действиями игрока, случайно перемещающегося по сгенерированной области, и использовали ролик для обучения нейронной сети на основе алгоритма предиктивного кодирования.
Так было обнаружено, что нейронная сеть способна узнавать, как объекты в мире Minecraft организованы относительно друг друга, и «предсказывать», какие элементы окружения будут возникать дальше при движении по пространству.
Более того, команда открыла исходный код нейронной сети и увидела, что представления о различных объектах хранятся пространственно относительно друг друга. Другими словами, они увидели карту окружения Minecraft, сохраненную внутри нейронной сети.
Нейронные сети могут ориентироваться по картам, предоставленным человеком, например, в случае автомобиля с системой GPS. Однако впервые нейронная сеть оказалась способна создавать свою собственную карту. Эта способность пространственно хранить и организовывать информацию может в конечном итоге помочь нейронным сетям становиться «умнее», позволяя им решать действительно сложные задачи, так же как это делают люди.
Подход, основанный на биологической аналогии, позволит исследователям лучше понять работу мозга и применить новое знание для улучшения искусственных нейронных сетей. В итоге это позволит найти новые способы решения сложных задач, которые ранее были недоступны для искусственного интеллекта.
- Алексей Павлов
- Nature Machine Intelligence
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....