Для чего учёные изменили гены кишечных бактерий прямо в живых мышах
Учёные во Франции разработали инструмент для редактирования генов, который может изменять бактерии, населяющие непосредственно живых мышей. Для этого использовали новую разновидность редактора генов, чтобы модифицировать целевой ген более чем в 90% колоний Escherichia coli в кишечнике мыши. Это научное название кишечной палочки — вида бактерий, распространённых во внутренностях теплокровных животных, сокращённо — E. coli.
Синтетический биолог Ксавье Дюпорте — соучредитель биотехнологической компании в Париже Eligo Bioscience. Он рассказал, что они с коллегами просто мечтали о возможности осуществить подобную генную модификацию.
Важно пояснить, что такое система CRISPR-Cas. CRISPR в составе микробов — это короткие повторы генетической информации, расположенные группами. Cas — это прилегающие к ним кластеры генов. Система CRISPR-Cas содержит фрагменты ранее атаковавших клетку микробов. В общем, таким образом формируется иммунитет. Системы CRISPR-Cas обнаружены примерно у половины бактерий вообще.
Ранее наука уже освоила метод редактировать CRISPR-Cas для уничтожения вредных бактерий в кишечнике мышей. Технологии редактирования геномов при помощи системы CRISPR-Cas позволяют вносить изменения в ДНК, не разрезая цепочку нуклеотидов (строительных блоков для биологических соединений), а лишь заменяя основание.
Итак, Дюпорте с коллегами хотели изменить бактерии в микробиоме (микрофлоре) кишечника, не убивая их. Для этого они использовали редактор оснований, который заменяет одно нуклеотидное основание другим — например, преобразуя компонент A в G, — не разрушая двойную цепь ДНК.
До сих пор основным известным редакторам оснований не удавалось в достаточной степени модифицировать целевую популяцию бактерий, чтобы она была эффективной. Это связано с тем, что прежде удавалось воздействовать лишь на некоторые рецепторы, которые распространены в лабораторных культурах бактерий. То есть на бактерии в пробирках, а не в организме животных.
Чтобы решить задачу, группа биологов разработала средство из фрагментов бактериофага, то есть вируса, поражающего бактерии. Вирус воздействует на несколько восприимчивых участков кишечной палочки. Эти фрагменты содержали базовый редактор, нацеленный на конкретные гены E. coli. Исследователи также усовершенствовали систему, чтобы предотвратить репликацию (копирование) и распространение доставляемого им генетического материала, когда он уже внутри бактерий.
Итак, биологи внедрили базовый редактор в организм мышей и использовали его для замены компонента кода A на G в гене E. coli, который производит лактамазы — ферменты, определяющие устойчивость бактерий к нескольким типам антибиотиков. Примерно через восемь часов после того, как животным подсадили новое средство, в их кишечнике удалось отредактировать около 93% целевых бактерий.
Затем исследователи адаптировали базовый редактор, чтобы он мог модифицировать ген E. coli, производящий белок, который должен играть роль в нескольких нейродегенеративных и аутоиммунных заболеваниях. Доля отредактированных бактерий колебалась около 70% через три недели после того, как мыши прошли через генную обработку.
Учёные утверждают, что в лаборатории можно также использовать созданный инструмент для редактирования штаммов E. coli и другой распространённой бактерии Klebsiella pneumoniae, которая может вызывать пневмонию. Это говорит о том, что разработанная система редактирования может быть настроена для воздействия на различные штаммы и виды бактерий.
Чейз Бейзел — инженер-химик из Института исследований инфекций на основе РНК имени Гельмгольца в Вюрцбурге, Германия. Он назвал новую систему редактирования бактериальных генов «критически важным скачком вперед» в разработке инструментов, которые могут модифицировать бактерии непосредственно внутри кишечника. Исследование «открывает возможность редактирования микробов для борьбы с болезнями», добавил эксперт.
Следующим шагом Дюпорте и его коллег станет выведение лабораторных мышей с заболеваниями, вызванными составом микробов в их организме. Это позволило бы оценить, удастся ли исцелить подопытных новым способом.
Синтетический биолог Ксавье Дюпорте — соучредитель биотехнологической компании в Париже Eligo Bioscience. Он рассказал, что они с коллегами просто мечтали о возможности осуществить подобную генную модификацию.
Важно пояснить, что такое система CRISPR-Cas. CRISPR в составе микробов — это короткие повторы генетической информации, расположенные группами. Cas — это прилегающие к ним кластеры генов. Система CRISPR-Cas содержит фрагменты ранее атаковавших клетку микробов. В общем, таким образом формируется иммунитет. Системы CRISPR-Cas обнаружены примерно у половины бактерий вообще.
Ранее наука уже освоила метод редактировать CRISPR-Cas для уничтожения вредных бактерий в кишечнике мышей. Технологии редактирования геномов при помощи системы CRISPR-Cas позволяют вносить изменения в ДНК, не разрезая цепочку нуклеотидов (строительных блоков для биологических соединений), а лишь заменяя основание.
Итак, Дюпорте с коллегами хотели изменить бактерии в микробиоме (микрофлоре) кишечника, не убивая их. Для этого они использовали редактор оснований, который заменяет одно нуклеотидное основание другим — например, преобразуя компонент A в G, — не разрушая двойную цепь ДНК.
До сих пор основным известным редакторам оснований не удавалось в достаточной степени модифицировать целевую популяцию бактерий, чтобы она была эффективной. Это связано с тем, что прежде удавалось воздействовать лишь на некоторые рецепторы, которые распространены в лабораторных культурах бактерий. То есть на бактерии в пробирках, а не в организме животных.
Чтобы решить задачу, группа биологов разработала средство из фрагментов бактериофага, то есть вируса, поражающего бактерии. Вирус воздействует на несколько восприимчивых участков кишечной палочки. Эти фрагменты содержали базовый редактор, нацеленный на конкретные гены E. coli. Исследователи также усовершенствовали систему, чтобы предотвратить репликацию (копирование) и распространение доставляемого им генетического материала, когда он уже внутри бактерий.
Итак, биологи внедрили базовый редактор в организм мышей и использовали его для замены компонента кода A на G в гене E. coli, который производит лактамазы — ферменты, определяющие устойчивость бактерий к нескольким типам антибиотиков. Примерно через восемь часов после того, как животным подсадили новое средство, в их кишечнике удалось отредактировать около 93% целевых бактерий.
Затем исследователи адаптировали базовый редактор, чтобы он мог модифицировать ген E. coli, производящий белок, который должен играть роль в нескольких нейродегенеративных и аутоиммунных заболеваниях. Доля отредактированных бактерий колебалась около 70% через три недели после того, как мыши прошли через генную обработку.
Учёные утверждают, что в лаборатории можно также использовать созданный инструмент для редактирования штаммов E. coli и другой распространённой бактерии Klebsiella pneumoniae, которая может вызывать пневмонию. Это говорит о том, что разработанная система редактирования может быть настроена для воздействия на различные штаммы и виды бактерий.
Чейз Бейзел — инженер-химик из Института исследований инфекций на основе РНК имени Гельмгольца в Вюрцбурге, Германия. Он назвал новую систему редактирования бактериальных генов «критически важным скачком вперед» в разработке инструментов, которые могут модифицировать бактерии непосредственно внутри кишечника. Исследование «открывает возможность редактирования микробов для борьбы с болезнями», добавил эксперт.
Следующим шагом Дюпорте и его коллег станет выведение лабораторных мышей с заболеваниями, вызванными составом микробов в их организме. Это позволило бы оценить, удастся ли исцелить подопытных новым способом.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Операция «Байконур»: как СССР дерзко и красиво долгие годы водил за нос весь Запад
С какого космодрома на самом деле стартовал Юрий Гагарин?...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...
Главная тайна Аркаима: что спасло самый древний город на территории России от полного уничтожения?
Почему эксперты считают, что в этом месте «текут» две параллельные реальности?...
11 лет обмана и позора: Эксперты констатируют, что программа «Чистый Эверест» с треском провалилась
Кто и почему превращает высочайшую гору на планете в гигантскую свалку?...
Наука в корне ошибалась: на Титане нет огромного океана, вместо этого он пронизан «слякотными туннелями»
Почему ученые уверены, что новое открытие только увеличивает шансы на нахождение жизни на крупнейшем спутнике Сатурна?...
Чужое сердце, чужая жизнь: эти истории заставляют сомневаться в науке
Новое исследование говорит: 90% людей, получивших чужие органы, признаются, что они странно изменились после операции...