Нарочная случайность в ИИ для роботов улучшила результаты
Инженеры из Северо-Западного университета, США, разработали новый алгоритм искусственного интеллекта (ИИ) специально для робототехники. Помогая таким устройствам быстро и надёжно развивать сложные навыки, метод значительно повышает практичность и безопасность роботов.
Алгоритм получил название Maximum Diffusion Reinforcement Learning (MaxDiffRL), что можно перевести как «усиленное обучение с максимальным рассеянием». Программное обеспечение (ПО) побуждает роботов исследовать окружающую среду наиболее случайным образом ради всестороннего опыта.
Нарочито заложенная случайность улучшает качество данных, собираемых роботами вокруг себя. В компьютерной модели виртуальные устройства обучались быстрее и эффективнее, повышая тем самым надёжность и производительность.
При тестировании в сравнении с иными видами ИИ компьютерные имитации с использованием алгоритма MaxDiffRL неизменно превосходили прочие самые современные модели. Фактически, новый алгоритм работает настолько хорошо, что роботы выучивают новые задачи, а затем успешно выполняют их при первой же попытке. То есть благодаря MaxDiffRL делают всё правильно с первого раза. Это резко контрастирует с существующими моделями ИИ, при которых обучение идёт методом проб и ошибок, то есть куда медленнее.
— Томас Берруэта, руководитель исследования.
Обычно для тренировки алгоритмов машинного обучения исследователи и разработчики используют большие объёмы данных, которые тщательно фильтруются и обрабатываются людьми. ИИ учится на этих данных действительно методом проб и ошибок, пока не достигнет оптимальных результатов. Процесс этот хорошо работает для софтверных систем, в форме ПО, таких как ChatGPT и Google Gemini. Но метод не столь эффективен для воплощённых, физических, устройств с ИИ, таких как роботы. Вот почему нормально, чтобы роботы собирали информацию самостоятельно, без копания людей в данных.
Чтобы протестировать новый алгоритм, исследователи запустили компьютерное моделирование, дав задание продолговатым виртуальным роботам выполнять ряд стандартных задач. В целом модели с MaxDiffRL, обучались быстрее других. Они также корректно выполняли команды намного последовательнее и надёжнее, чем другие «змейки». Прячём, как уже было сказано, с первой попытки, начав без каких-либо предварительных знаний о ситуации.
Берруэта заявил, что созданные им с коллегами роботы были быстрее и манёвреннее. А это стало бы огромным преимуществом для реальных устройств.
Кстати, MaxDiffRL необязательно использовать только для перемещающихся роботов. Например, он вполне бы подошёл для манипулятора на кухне, который учится загружать различную утварь в посудомоечную машину. Потенциально применение — беспилотные автомобили и летательные аппараты, домашняя робототехника и автоматизация различных процессов.
Итак, MaxDiffRL — это алгоритм широкого назначения, его можно использовать для множества целей. Исследователи надеются, что созданное ими ПО решит фундаментальные проблемы отрасли, и в конечном итоге проложит путь к надёжному принятию решений в робототехнике.
Алгоритм получил название Maximum Diffusion Reinforcement Learning (MaxDiffRL), что можно перевести как «усиленное обучение с максимальным рассеянием». Программное обеспечение (ПО) побуждает роботов исследовать окружающую среду наиболее случайным образом ради всестороннего опыта.
Нарочито заложенная случайность улучшает качество данных, собираемых роботами вокруг себя. В компьютерной модели виртуальные устройства обучались быстрее и эффективнее, повышая тем самым надёжность и производительность.
При тестировании в сравнении с иными видами ИИ компьютерные имитации с использованием алгоритма MaxDiffRL неизменно превосходили прочие самые современные модели. Фактически, новый алгоритм работает настолько хорошо, что роботы выучивают новые задачи, а затем успешно выполняют их при первой же попытке. То есть благодаря MaxDiffRL делают всё правильно с первого раза. Это резко контрастирует с существующими моделями ИИ, при которых обучение идёт методом проб и ошибок, то есть куда медленнее.
С нашей платформой каждый раз, когда вы включаете робота, он делает именно то, о чём его попросили
— Томас Берруэта, руководитель исследования.
Обычно для тренировки алгоритмов машинного обучения исследователи и разработчики используют большие объёмы данных, которые тщательно фильтруются и обрабатываются людьми. ИИ учится на этих данных действительно методом проб и ошибок, пока не достигнет оптимальных результатов. Процесс этот хорошо работает для софтверных систем, в форме ПО, таких как ChatGPT и Google Gemini. Но метод не столь эффективен для воплощённых, физических, устройств с ИИ, таких как роботы. Вот почему нормально, чтобы роботы собирали информацию самостоятельно, без копания людей в данных.
Чтобы протестировать новый алгоритм, исследователи запустили компьютерное моделирование, дав задание продолговатым виртуальным роботам выполнять ряд стандартных задач. В целом модели с MaxDiffRL, обучались быстрее других. Они также корректно выполняли команды намного последовательнее и надёжнее, чем другие «змейки». Прячём, как уже было сказано, с первой попытки, начав без каких-либо предварительных знаний о ситуации.
Берруэта заявил, что созданные им с коллегами роботы были быстрее и манёвреннее. А это стало бы огромным преимуществом для реальных устройств.
Кстати, MaxDiffRL необязательно использовать только для перемещающихся роботов. Например, он вполне бы подошёл для манипулятора на кухне, который учится загружать различную утварь в посудомоечную машину. Потенциально применение — беспилотные автомобили и летательные аппараты, домашняя робототехника и автоматизация различных процессов.
Итак, MaxDiffRL — это алгоритм широкого назначения, его можно использовать для множества целей. Исследователи надеются, что созданное ими ПО решит фундаментальные проблемы отрасли, и в конечном итоге проложит путь к надёжному принятию решений в робототехнике.
- Дмитрий Ладыгин
- youtu.be/P5Dpb21es58
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Он был размером как четыре Эвереста
Ученые считают: жизнь на Земле породил гигантский метеорит....
Странный случай: укус змеи подействовал на австралийца спустя 15 часов
Только 10% укушенных на самом деле получают дозу яда....
Швейцарские ученые собираются распылить в атмосфере миллионы тонн алмазов
Остановит ли это глобальное потепление?...
Секретные китайские спутники «Тысячи парусов» — новый кошмар для астрономов
Наблюдать за звездами с Земли становится всё проблематичнее....
Почему викинги не сумели колонизировать Северную Америку?
1000-летняя тайна, похоже, все-таки разгадана....
Аномальное древнее кладбище найдено на юге Испании
В 5500-летнем некрополе оказалось много женщин и мало мужчин....
20 млн жителей США могут остаться без воды
Великие озера поразила небывалая засуха....
Электрические обои согреют комнату за три минуты
Альтернатива центральному отоплению или очередной фейк?...
Первые оседлые люди в Европе: в Сербии обнаружили дом возрастом 8000 лет
Обгорелое жилище перевернуло представления о ранних поселенцах....
Запущенный в космос новый коронограф прислал исторические снимки
Устаревший специальный телескоп тянет лямку с 1995-го....
И снова наглый плагиат от компании Tesla?
Маск опять в суде. Теперь из-за «Бегущего по лезвию 2049»....
Марк Цукерберг представил «самые передовые очки за всю историю»
Разбираемся: стоит ли девайс свои 10 000 $....
Добыча криптовалюты: кто-то на этом зарабатывает, а кто-то теряет здоровье
Американские ученые вскрыли неожиданную проблему....
Почти что полёт: найдены следы динозавра, который ускорял свой бег крыльями
Окаменевшие отпечатки позволили рассчитать особенности передвижения....
Ученые наконец-то подтвердили, что солнечный максимум уже наступил
Метеозависимым людям придётся несладко....
Alexa — умная помощница от Amazon — массово распространяла фейки
Владелец разводит руками, но причин случившегося не сообщает....