Нарочная случайность в ИИ для роботов улучшила результаты
Инженеры из Северо-Западного университета, США, разработали новый алгоритм искусственного интеллекта (ИИ) специально для робототехники. Помогая таким устройствам быстро и надёжно развивать сложные навыки, метод значительно повышает практичность и безопасность роботов.
Алгоритм получил название Maximum Diffusion Reinforcement Learning (MaxDiffRL), что можно перевести как «усиленное обучение с максимальным рассеянием». Программное обеспечение (ПО) побуждает роботов исследовать окружающую среду наиболее случайным образом ради всестороннего опыта.
Нарочито заложенная случайность улучшает качество данных, собираемых роботами вокруг себя. В компьютерной модели виртуальные устройства обучались быстрее и эффективнее, повышая тем самым надёжность и производительность.
При тестировании в сравнении с иными видами ИИ компьютерные имитации с использованием алгоритма MaxDiffRL неизменно превосходили прочие самые современные модели. Фактически, новый алгоритм работает настолько хорошо, что роботы выучивают новые задачи, а затем успешно выполняют их при первой же попытке. То есть благодаря MaxDiffRL делают всё правильно с первого раза. Это резко контрастирует с существующими моделями ИИ, при которых обучение идёт методом проб и ошибок, то есть куда медленнее.
— Томас Берруэта, руководитель исследования.
Обычно для тренировки алгоритмов машинного обучения исследователи и разработчики используют большие объёмы данных, которые тщательно фильтруются и обрабатываются людьми. ИИ учится на этих данных действительно методом проб и ошибок, пока не достигнет оптимальных результатов. Процесс этот хорошо работает для софтверных систем, в форме ПО, таких как ChatGPT и Google Gemini. Но метод не столь эффективен для воплощённых, физических, устройств с ИИ, таких как роботы. Вот почему нормально, чтобы роботы собирали информацию самостоятельно, без копания людей в данных.
Чтобы протестировать новый алгоритм, исследователи запустили компьютерное моделирование, дав задание продолговатым виртуальным роботам выполнять ряд стандартных задач. В целом модели с MaxDiffRL, обучались быстрее других. Они также корректно выполняли команды намного последовательнее и надёжнее, чем другие «змейки». Прячём, как уже было сказано, с первой попытки, начав без каких-либо предварительных знаний о ситуации.

Берруэта заявил, что созданные им с коллегами роботы были быстрее и манёвреннее. А это стало бы огромным преимуществом для реальных устройств.
Кстати, MaxDiffRL необязательно использовать только для перемещающихся роботов. Например, он вполне бы подошёл для манипулятора на кухне, который учится загружать различную утварь в посудомоечную машину. Потенциально применение — беспилотные автомобили и летательные аппараты, домашняя робототехника и автоматизация различных процессов.
Итак, MaxDiffRL — это алгоритм широкого назначения, его можно использовать для множества целей. Исследователи надеются, что созданное ими ПО решит фундаментальные проблемы отрасли, и в конечном итоге проложит путь к надёжному принятию решений в робототехнике.
Алгоритм получил название Maximum Diffusion Reinforcement Learning (MaxDiffRL), что можно перевести как «усиленное обучение с максимальным рассеянием». Программное обеспечение (ПО) побуждает роботов исследовать окружающую среду наиболее случайным образом ради всестороннего опыта.
Нарочито заложенная случайность улучшает качество данных, собираемых роботами вокруг себя. В компьютерной модели виртуальные устройства обучались быстрее и эффективнее, повышая тем самым надёжность и производительность.
При тестировании в сравнении с иными видами ИИ компьютерные имитации с использованием алгоритма MaxDiffRL неизменно превосходили прочие самые современные модели. Фактически, новый алгоритм работает настолько хорошо, что роботы выучивают новые задачи, а затем успешно выполняют их при первой же попытке. То есть благодаря MaxDiffRL делают всё правильно с первого раза. Это резко контрастирует с существующими моделями ИИ, при которых обучение идёт методом проб и ошибок, то есть куда медленнее.
С нашей платформой каждый раз, когда вы включаете робота, он делает именно то, о чём его попросили
— Томас Берруэта, руководитель исследования.
Обычно для тренировки алгоритмов машинного обучения исследователи и разработчики используют большие объёмы данных, которые тщательно фильтруются и обрабатываются людьми. ИИ учится на этих данных действительно методом проб и ошибок, пока не достигнет оптимальных результатов. Процесс этот хорошо работает для софтверных систем, в форме ПО, таких как ChatGPT и Google Gemini. Но метод не столь эффективен для воплощённых, физических, устройств с ИИ, таких как роботы. Вот почему нормально, чтобы роботы собирали информацию самостоятельно, без копания людей в данных.
Чтобы протестировать новый алгоритм, исследователи запустили компьютерное моделирование, дав задание продолговатым виртуальным роботам выполнять ряд стандартных задач. В целом модели с MaxDiffRL, обучались быстрее других. Они также корректно выполняли команды намного последовательнее и надёжнее, чем другие «змейки». Прячём, как уже было сказано, с первой попытки, начав без каких-либо предварительных знаний о ситуации.

Берруэта заявил, что созданные им с коллегами роботы были быстрее и манёвреннее. А это стало бы огромным преимуществом для реальных устройств.
Кстати, MaxDiffRL необязательно использовать только для перемещающихся роботов. Например, он вполне бы подошёл для манипулятора на кухне, который учится загружать различную утварь в посудомоечную машину. Потенциально применение — беспилотные автомобили и летательные аппараты, домашняя робототехника и автоматизация различных процессов.
Итак, MaxDiffRL — это алгоритм широкого назначения, его можно использовать для множества целей. Исследователи надеются, что созданное ими ПО решит фундаментальные проблемы отрасли, и в конечном итоге проложит путь к надёжному принятию решений в робототехнике.
- Дмитрий Ладыгин
- youtu.be/P5Dpb21es58
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...