
Нарочная случайность в ИИ для роботов улучшила результаты
Инженеры из Северо-Западного университета, США, разработали новый алгоритм искусственного интеллекта (ИИ) специально для робототехники. Помогая таким устройствам быстро и надёжно развивать сложные навыки, метод значительно повышает практичность и безопасность роботов.
Алгоритм получил название Maximum Diffusion Reinforcement Learning (MaxDiffRL), что можно перевести как «усиленное обучение с максимальным рассеянием». Программное обеспечение (ПО) побуждает роботов исследовать окружающую среду наиболее случайным образом ради всестороннего опыта.
Нарочито заложенная случайность улучшает качество данных, собираемых роботами вокруг себя. В компьютерной модели виртуальные устройства обучались быстрее и эффективнее, повышая тем самым надёжность и производительность.
При тестировании в сравнении с иными видами ИИ компьютерные имитации с использованием алгоритма MaxDiffRL неизменно превосходили прочие самые современные модели. Фактически, новый алгоритм работает настолько хорошо, что роботы выучивают новые задачи, а затем успешно выполняют их при первой же попытке. То есть благодаря MaxDiffRL делают всё правильно с первого раза. Это резко контрастирует с существующими моделями ИИ, при которых обучение идёт методом проб и ошибок, то есть куда медленнее.
— Томас Берруэта, руководитель исследования.
Обычно для тренировки алгоритмов машинного обучения исследователи и разработчики используют большие объёмы данных, которые тщательно фильтруются и обрабатываются людьми. ИИ учится на этих данных действительно методом проб и ошибок, пока не достигнет оптимальных результатов. Процесс этот хорошо работает для софтверных систем, в форме ПО, таких как ChatGPT и Google Gemini. Но метод не столь эффективен для воплощённых, физических, устройств с ИИ, таких как роботы. Вот почему нормально, чтобы роботы собирали информацию самостоятельно, без копания людей в данных.
Чтобы протестировать новый алгоритм, исследователи запустили компьютерное моделирование, дав задание продолговатым виртуальным роботам выполнять ряд стандартных задач. В целом модели с MaxDiffRL, обучались быстрее других. Они также корректно выполняли команды намного последовательнее и надёжнее, чем другие «змейки». Прячём, как уже было сказано, с первой попытки, начав без каких-либо предварительных знаний о ситуации.

Берруэта заявил, что созданные им с коллегами роботы были быстрее и манёвреннее. А это стало бы огромным преимуществом для реальных устройств.
Кстати, MaxDiffRL необязательно использовать только для перемещающихся роботов. Например, он вполне бы подошёл для манипулятора на кухне, который учится загружать различную утварь в посудомоечную машину. Потенциально применение — беспилотные автомобили и летательные аппараты, домашняя робототехника и автоматизация различных процессов.
Итак, MaxDiffRL — это алгоритм широкого назначения, его можно использовать для множества целей. Исследователи надеются, что созданное ими ПО решит фундаментальные проблемы отрасли, и в конечном итоге проложит путь к надёжному принятию решений в робототехнике.
Алгоритм получил название Maximum Diffusion Reinforcement Learning (MaxDiffRL), что можно перевести как «усиленное обучение с максимальным рассеянием». Программное обеспечение (ПО) побуждает роботов исследовать окружающую среду наиболее случайным образом ради всестороннего опыта.
Нарочито заложенная случайность улучшает качество данных, собираемых роботами вокруг себя. В компьютерной модели виртуальные устройства обучались быстрее и эффективнее, повышая тем самым надёжность и производительность.
При тестировании в сравнении с иными видами ИИ компьютерные имитации с использованием алгоритма MaxDiffRL неизменно превосходили прочие самые современные модели. Фактически, новый алгоритм работает настолько хорошо, что роботы выучивают новые задачи, а затем успешно выполняют их при первой же попытке. То есть благодаря MaxDiffRL делают всё правильно с первого раза. Это резко контрастирует с существующими моделями ИИ, при которых обучение идёт методом проб и ошибок, то есть куда медленнее.
С нашей платформой каждый раз, когда вы включаете робота, он делает именно то, о чём его попросили
— Томас Берруэта, руководитель исследования.
Обычно для тренировки алгоритмов машинного обучения исследователи и разработчики используют большие объёмы данных, которые тщательно фильтруются и обрабатываются людьми. ИИ учится на этих данных действительно методом проб и ошибок, пока не достигнет оптимальных результатов. Процесс этот хорошо работает для софтверных систем, в форме ПО, таких как ChatGPT и Google Gemini. Но метод не столь эффективен для воплощённых, физических, устройств с ИИ, таких как роботы. Вот почему нормально, чтобы роботы собирали информацию самостоятельно, без копания людей в данных.
Чтобы протестировать новый алгоритм, исследователи запустили компьютерное моделирование, дав задание продолговатым виртуальным роботам выполнять ряд стандартных задач. В целом модели с MaxDiffRL, обучались быстрее других. Они также корректно выполняли команды намного последовательнее и надёжнее, чем другие «змейки». Прячём, как уже было сказано, с первой попытки, начав без каких-либо предварительных знаний о ситуации.

Берруэта заявил, что созданные им с коллегами роботы были быстрее и манёвреннее. А это стало бы огромным преимуществом для реальных устройств.
Кстати, MaxDiffRL необязательно использовать только для перемещающихся роботов. Например, он вполне бы подошёл для манипулятора на кухне, который учится загружать различную утварь в посудомоечную машину. Потенциально применение — беспилотные автомобили и летательные аппараты, домашняя робототехника и автоматизация различных процессов.
Итак, MaxDiffRL — это алгоритм широкого назначения, его можно использовать для множества целей. Исследователи надеются, что созданное ими ПО решит фундаментальные проблемы отрасли, и в конечном итоге проложит путь к надёжному принятию решений в робототехнике.
- Дмитрий Ладыгин
- youtu.be/P5Dpb21es58
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Специалисты предупреждают: ни в коем случае не ставьте MAX на личный телефон!
Рассказываем, почему навязываемый россиянам мессенджер удобен в первую очередь мошенникам...

26 ран и 750 лет молчания: Анализ ДНК раскрыл тайну очень жестокого убийства русского князя в Будапеште
Международная команда ученых сумела на 100% доказать личность погибшего...

Ученые подтверждают: Человеческое сознание может перемещаться во времени
А интуиция — воспоминание о будущем. Это доказали секретные эксперименты в ЦРУ...

Астрофизики были поражены, обнаружив «тоннель», соединяющий Солнечную систему с другими звездами
Исследователи из Института Макса Планка уверены: гигантская «транспортная сеть» охватывает всю нашу Галактику...

Работу самой мощной АЭС в Европе полностью парализовали… обычные медузы
Эксперты говорят: это очередное подтверждение того, что энергетика ЕС — это колосс на глиняных ногах...

Полная расшифровка ДНК хатыстырского человека выявила древнюю колыбель человечества в России
Геном охотника, жившего 9 800 лет назад, полностью подтвердил теорию российских ученых, которую мир не принимал десятилетиями...

В воде замечена амеба, пожирающая мозг. Смертельная опасность — 97%!
Такое шокирующее предупреждение получили жители сразу двух австралийских городов...