Новый робот плавает и прыгает, как китайский рисовый кузнечик
Кузнечик вида Oxya chinensis умеет молниеносно выпрыгивать из воды. Эта заманчивая способность привела тому, что китайский рисовый кузнечик, как ещё называют это насекомое, вдохновил роботетехников из Германии.
Профессор Станислав Горб из Кильского университета — биолог, материаловед и специалист по бионике, то есть науке о способностях животных, полезных для создания промышленных аналогов. Профессор Горб сотоварищи получили известность среди робототехников благодаря тому, что заимствовали секреты разной живности для технических новаций. Например, ранее они создали захваты робота на основе клейкой плёнки и аналога лапок насекомых, пауков и гекконов, благодаря которым те бегают по стенам.
И вот Горб с коллегами в сотрудничестве с исследователями из Китая изучили того самого кузнечика Oxya chinensis. Этих прыгунов-летунов часто можно встретить вдоль реки Янцзы. И если они плюхнутся ненароком в воду, то могут легко выбраться и улететь. В общем, способность этого существа плавать и выпрыгивать из воды очаровала специалистов по биомеханике.
Чрезвычайно быстрое передвижение кузнечика по воды и то, как он сигает из неё до сих пор досконально не изучалось. Тем более с прицелом на создание аналогичных роботов.
Сначала в лаборатории пристально рассмотрели, как именно O. chinensis это делают. Для эксперимента 15 особей длиной от 2,2 до 3,4 см (без учёта лапок) и весом от 0,4 г до 1 г бросали в стеклянную ванночку. Вели себя подопытные по-разному: одни замирали на поверхности воды, другие вяло дрейфовали, третьи принимались бодро плыть, а четвёртые сразу же выпрыгивали.
Затем учёные сосредоточились только на тех видео, на которых кузнечики плавали либо выпрыгивали из жидкости. Съёмки с помощью двух высокоскоростных камер позволили проанализировать 48 прыжков и 54 «заплыва». Исследователи сравнили все движения, а затем вникли в механизмы для понимания, как кузнечикам удавалась их акробатика.
Предыдущие похожие исследования фокусировались на двух типах передвижения по поверхности воды. Первый зависит от поверхностного натяжения, которое используют водомерки. Второе обеспечивается исключительно работой лапок животного. Пример тому — бег по воде ящериц-василисков.
Но ни одна из двух динамических стратегий не была идеальной для создания роботов. Для скольжения по воде наподобие водомерок роботам понадобились бы предельно гидрофобные (не смачиваемые) поверхности. А для больших роботов это было просто нереально. А чтобы молотить конечностями по воде со скоростью василиска робот затрачивал бы слишком много энергии.
Умение китайского кузнечика выпрыгивать из воды основано на другом принципе, который команда профессора Горба описала впервые. С точки зрения физики всё оказалось связано с гидростатическим давлением, пропорциональным массе кузнечиков. А движущие силы зависели от взаимодействия лапок с водой, то есть подчинялись законам гидродинамики. Иными словами, китайский кузнечик сочетает комбинацию техник и водомерок, и василисков: его весу противостоят статические гидросилы, а поступательное движение вперёд происходит за счёт гидродинамики.
После изучения структуры движений и поведенческих стратегий Oxya chinensis Горб и его команда построили действующий образец своего первого робота. Подобно насекомым, прототип может плавать и выпрыгивать из воды, двигая конечностями с разной скоростью.
К сожалению, соответствующее видео на ютьюбе ещё не появилось, так что короткую съёмку можно найти по ссылке.
Профессор Станислав Горб из Кильского университета — биолог, материаловед и специалист по бионике, то есть науке о способностях животных, полезных для создания промышленных аналогов. Профессор Горб сотоварищи получили известность среди робототехников благодаря тому, что заимствовали секреты разной живности для технических новаций. Например, ранее они создали захваты робота на основе клейкой плёнки и аналога лапок насекомых, пауков и гекконов, благодаря которым те бегают по стенам.
И вот Горб с коллегами в сотрудничестве с исследователями из Китая изучили того самого кузнечика Oxya chinensis. Этих прыгунов-летунов часто можно встретить вдоль реки Янцзы. И если они плюхнутся ненароком в воду, то могут легко выбраться и улететь. В общем, способность этого существа плавать и выпрыгивать из воды очаровала специалистов по биомеханике.
Чрезвычайно быстрое передвижение кузнечика по воды и то, как он сигает из неё до сих пор досконально не изучалось. Тем более с прицелом на создание аналогичных роботов.
Сначала в лаборатории пристально рассмотрели, как именно O. chinensis это делают. Для эксперимента 15 особей длиной от 2,2 до 3,4 см (без учёта лапок) и весом от 0,4 г до 1 г бросали в стеклянную ванночку. Вели себя подопытные по-разному: одни замирали на поверхности воды, другие вяло дрейфовали, третьи принимались бодро плыть, а четвёртые сразу же выпрыгивали.
Затем учёные сосредоточились только на тех видео, на которых кузнечики плавали либо выпрыгивали из жидкости. Съёмки с помощью двух высокоскоростных камер позволили проанализировать 48 прыжков и 54 «заплыва». Исследователи сравнили все движения, а затем вникли в механизмы для понимания, как кузнечикам удавалась их акробатика.
Предыдущие похожие исследования фокусировались на двух типах передвижения по поверхности воды. Первый зависит от поверхностного натяжения, которое используют водомерки. Второе обеспечивается исключительно работой лапок животного. Пример тому — бег по воде ящериц-василисков.
Но ни одна из двух динамических стратегий не была идеальной для создания роботов. Для скольжения по воде наподобие водомерок роботам понадобились бы предельно гидрофобные (не смачиваемые) поверхности. А для больших роботов это было просто нереально. А чтобы молотить конечностями по воде со скоростью василиска робот затрачивал бы слишком много энергии.
Умение китайского кузнечика выпрыгивать из воды основано на другом принципе, который команда профессора Горба описала впервые. С точки зрения физики всё оказалось связано с гидростатическим давлением, пропорциональным массе кузнечиков. А движущие силы зависели от взаимодействия лапок с водой, то есть подчинялись законам гидродинамики. Иными словами, китайский кузнечик сочетает комбинацию техник и водомерок, и василисков: его весу противостоят статические гидросилы, а поступательное движение вперёд происходит за счёт гидродинамики.
После изучения структуры движений и поведенческих стратегий Oxya chinensis Горб и его команда построили действующий образец своего первого робота. Подобно насекомым, прототип может плавать и выпрыгивать из воды, двигая конечностями с разной скоростью.
К сожалению, соответствующее видео на ютьюбе ещё не появилось, так что короткую съёмку можно найти по ссылке.
- Дмитрий Ладыгин
- techxplore.com; wikipedia.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Чудо в перьях: Робот-голубь «упорхнёт» от радиолокации
Изобретение грозит новой гонкой вооружений....