Новый шаг к тайнам Вселенной: Российские ученые строят мощный телескоп на Луне
Российские ученые из Астрофизического центра Физического института имени П. Н. Лебедева РАН ставят перед собой амбициозную цель — установку на Луне сверхмощного современного телескопа. Уникальный проект представляет собой значительную веху в развитии астрофизики и может открыть новые возможности для изучения Вселенной.
Цель исследователей — создание комплексной субтерагерцовой обсерватории с использованием мощного массива антенн, который позволит проводить крупномасштабные исследования. Первая стадия проекта предусматривает создание прототипа антенной решетки, состоящей из нескольких антенн диаметром от трех до пяти метров. Этот прототип будет установлен на территории Пущинской радиоастрономической обсерватории (ПРАО), предоставляющей ученым идеальные условия для оценки работы системы.
После завершения процесса испытаний, планируется разработка полноценной субтерагерцовой обсерватории, включающей в себя шесть полностью настраиваемых антенн, каждая из которых будет иметь диаметр до восьми метров. Большое внимание будет уделяться качеству поверхности антенн, так как их гладкость играет решающую роль в достижении поставленных научных целей.
В настоящее время исследователи рассматривают различные варианты расположения массива антенн на Луне, и одним из них является идея размещения антенного комплекса внутри кратера. Такое местоположение обладает преимуществом отсутствия прямого попадания солнечных лучей, что снижает нагрузку на системы охлаждения научных инструментов. Однако этот подход одновременно влечет за собой сложности с энергоснабжением.
Для решения проблемы, ученые разработали сервисный модуль, который будет размещен в регионе, освещаемом солнечным светом. Этот модуль будет отвечать за генерацию и передачу электроэнергии до антенных модулей, расположенных внутри кратера. Кроме того, модуль будет обеспечивать обмен научной и служебной информацией с Землей.
Как альтернативный вариант размещения обсерватории, исследователи также рассматривают возможность построить ее в околополярной зоне Луны, где есть доступ к солнечному свету. Этот вариант предлагает преимущество в более высокой степени автономии в плане электропитания, поскольку антенная решетка может состоять из как стационарных, так и подвижных элементов. Используя подвижные антенны, обсерватория может быть размещена в оптимальных точках лунной поверхности для проведения наблюдений. Такой выбор также может столкнуться с техническими сложностями в связи с габаритами оборудования.
Размещение телескопа на поверхности спутника нашей планеты позволит получить более точные и подробные данные о космосе. Благодаря высокому разрешению и отсутствию атмосферных искажений. Этот телескоп сможет захватывать подробные изображения теней, создаваемых черными дырами, что предоставляет гораздо большие возможности, чем телескоп «Горизонт событий» (Event Horizon Telescope). Исследования черных дыр играют важную роль в расширении знаний о Вселенной и понимании ее состава и эволюции.
Деятельность обсерватории не будет ограничиваться только исследованием черных дыр. Она также позволит проводить исследования ранней Вселенной, с помощью изучения спектральных искажений в космическом микроволновом фоновом излучении. Анализируя эти искажения, ученые получат бесценную информацию об условиях и процессах, которые формировали раннюю Вселенную.
Создание космического интерферометра «космос-космос» представляет собой еще одно перспективное направление использования универсальной антенной решетки. Астрокосмический центр Физического института имени П. Н. Лебедева Российской академии наук обладает значительным опытом работы над проектами таких обсерваторий, как «Радиоастрон» и «Миллиметрон». Благодаря этому опыту новый космический интерферометр может иметь базовые линии до 1,5 миллиона километров и более. Такие размеры позволят достичь высокого углового разрешения, которое необходимо для исследования сверхкомпактных астрономических объектов, включая черные дыры, внегалактические мазерные источники и нейтронные звезды.
Космический интерферометр, в отличие от антенной решетки на поверхности Луны, предоставит возможность наблюдать близлежащие области сверхмассивных черных дыр в динамике. Это позволит изучать движение вещества в экстремальных условиях, непосредственно около горизонта событий. Такие наблюдения могут осуществляться в режиме «мгновенного снимка» (snapshot), когда благодаря удачной конфигурации орбит космических телескопов удается получить качественное изображение источника за кратчайшее время. Российские ученые, обладая опытом работы с антенной решеткой и высоким уровнем научной экспертизы, могут стать лидерами в развитии и использовании нового космического интерферометра для масштабных исследований Вселенной.
Цель исследователей — создание комплексной субтерагерцовой обсерватории с использованием мощного массива антенн, который позволит проводить крупномасштабные исследования. Первая стадия проекта предусматривает создание прототипа антенной решетки, состоящей из нескольких антенн диаметром от трех до пяти метров. Этот прототип будет установлен на территории Пущинской радиоастрономической обсерватории (ПРАО), предоставляющей ученым идеальные условия для оценки работы системы.
После завершения процесса испытаний, планируется разработка полноценной субтерагерцовой обсерватории, включающей в себя шесть полностью настраиваемых антенн, каждая из которых будет иметь диаметр до восьми метров. Большое внимание будет уделяться качеству поверхности антенн, так как их гладкость играет решающую роль в достижении поставленных научных целей.
В настоящее время исследователи рассматривают различные варианты расположения массива антенн на Луне, и одним из них является идея размещения антенного комплекса внутри кратера. Такое местоположение обладает преимуществом отсутствия прямого попадания солнечных лучей, что снижает нагрузку на системы охлаждения научных инструментов. Однако этот подход одновременно влечет за собой сложности с энергоснабжением.
Для решения проблемы, ученые разработали сервисный модуль, который будет размещен в регионе, освещаемом солнечным светом. Этот модуль будет отвечать за генерацию и передачу электроэнергии до антенных модулей, расположенных внутри кратера. Кроме того, модуль будет обеспечивать обмен научной и служебной информацией с Землей.
Как альтернативный вариант размещения обсерватории, исследователи также рассматривают возможность построить ее в околополярной зоне Луны, где есть доступ к солнечному свету. Этот вариант предлагает преимущество в более высокой степени автономии в плане электропитания, поскольку антенная решетка может состоять из как стационарных, так и подвижных элементов. Используя подвижные антенны, обсерватория может быть размещена в оптимальных точках лунной поверхности для проведения наблюдений. Такой выбор также может столкнуться с техническими сложностями в связи с габаритами оборудования.
Размещение телескопа на поверхности спутника нашей планеты позволит получить более точные и подробные данные о космосе. Благодаря высокому разрешению и отсутствию атмосферных искажений. Этот телескоп сможет захватывать подробные изображения теней, создаваемых черными дырами, что предоставляет гораздо большие возможности, чем телескоп «Горизонт событий» (Event Horizon Telescope). Исследования черных дыр играют важную роль в расширении знаний о Вселенной и понимании ее состава и эволюции.
Деятельность обсерватории не будет ограничиваться только исследованием черных дыр. Она также позволит проводить исследования ранней Вселенной, с помощью изучения спектральных искажений в космическом микроволновом фоновом излучении. Анализируя эти искажения, ученые получат бесценную информацию об условиях и процессах, которые формировали раннюю Вселенную.
Создание космического интерферометра «космос-космос» представляет собой еще одно перспективное направление использования универсальной антенной решетки. Астрокосмический центр Физического института имени П. Н. Лебедева Российской академии наук обладает значительным опытом работы над проектами таких обсерваторий, как «Радиоастрон» и «Миллиметрон». Благодаря этому опыту новый космический интерферометр может иметь базовые линии до 1,5 миллиона километров и более. Такие размеры позволят достичь высокого углового разрешения, которое необходимо для исследования сверхкомпактных астрономических объектов, включая черные дыры, внегалактические мазерные источники и нейтронные звезды.
Космический интерферометр, в отличие от антенной решетки на поверхности Луны, предоставит возможность наблюдать близлежащие области сверхмассивных черных дыр в динамике. Это позволит изучать движение вещества в экстремальных условиях, непосредственно около горизонта событий. Такие наблюдения могут осуществляться в режиме «мгновенного снимка» (snapshot), когда благодаря удачной конфигурации орбит космических телескопов удается получить качественное изображение источника за кратчайшее время. Российские ученые, обладая опытом работы с антенной решеткой и высоким уровнем научной экспертизы, могут стать лидерами в развитии и использовании нового космического интерферометра для масштабных исследований Вселенной.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Он был размером как четыре Эвереста
Ученые считают: жизнь на Земле породил гигантский метеорит....
Швейцарские ученые собираются распылить в атмосфере миллионы тонн алмазов
Остановит ли это глобальное потепление?...
Секретные китайские спутники «Тысячи парусов» — новый кошмар для астрономов
Наблюдать за звездами с Земли становится всё проблематичнее....
Раскрыта правда о «зелёной» Англии
На самом деле, Великобритании угрожает лососевое вымирание....
Почему викинги не сумели колонизировать Северную Америку?
1000-летняя тайна, похоже, все-таки разгадана....
Аномальное древнее кладбище найдено на юге Испании
В 5500-летнем некрополе оказалось много женщин и мало мужчин....
Лазеры раскрыли тайны затерянных городов на Великом шелковом пути
Стало известно, как города-близнецы процветали в суровом высокогорье....
Электрические обои согреют комнату за три минуты
Альтернатива центральному отоплению или очередной фейк?...
Специалисты NASA заявляют, что жизнь на Марсе может... скрываться
И они знают, где ее искать....
И снова наглый плагиат от компании Tesla?
Маск опять в суде. Теперь из-за «Бегущего по лезвию 2049»....
Ученые наконец-то подтвердили, что солнечный максимум уже наступил
Метеозависимым людям придётся несладко....
Доказано на макаках: одиночество в старости сокращает шансы заболеть
Меньше других рядом — меньше угроз....
Добыча криптовалюты: кто-то на этом зарабатывает, а кто-то теряет здоровье
Американские ученые вскрыли неожиданную проблему....
Марк Цукерберг представил «самые передовые очки за всю историю»
Разбираемся: стоит ли девайс свои 10 000 $....
Почти что полёт: найдены следы динозавра, который ускорял свой бег крыльями
Окаменевшие отпечатки позволили рассчитать особенности передвижения....
С помощью лидаров археологи нашли ещё более 6600 сооружений майя
Ещё предстоит обнаружить все крупные города древней цивилизации....