
Платформа на базе ИИ поможет полицейским обогнать «творчество» нарколабораторий
Новые психоактивные вещества в англоязычной литературе сокращают до NPS. Онлайн-платформа, названная соответственно NPS-MS, предсказывает вероятность наличия этих самых NPS с использованием глубокого обучения. Речь идёт о машинном обучении искусственного интеллекта (ИИ), который включает вычислительные алгоритмы с использованием больших наборов данных для выявления сложных взаимосвязей и создания прогностических моделей.
Фэй Ван — докторант кафедры компьютерных наук Университета Альберты, Канада. Он объяснил, что наркотики — это небольшая группа очень похожих веществ, которые имитируют воздействие на организм, например, кокаина или метамфетамина. Но их формулы хитрые производители часто меняют для обхода законов.
За последнее десятилетие было синтезировано более 1000 таких веществ, чтобы обманывать контролирующие органы, которые не успевают оперативно учитывать новые химические аналоги. Обычная работа с целью выявить новинки наркорынка требует трудоёмкого тестирования для получения информации, которая могла бы подтвердить наличие неизвестного вещества.
Фэй Ван начал с программирования инструментов машинного обучения, чтобы изучать человеческие метаболиты (продукты обмена веществ) и молекулы. После адаптации метода машинного обучения для идентификации новых психоактивных веществ, NPS-MS обучили с использованием результатов генеративной модели DarkNPS. Она предназначена для предварительного выявления, то есть прогнозирования, вероятных соединений из разряда NPS.
Затем исследователи из Дании заметили, что вычислительная технология Вана может применяться для идентификации новых психоактивных веществ. Тогда NPS-MS успешно идентифицировала вариант наркотика на основе фенциклидина, более известного как PCP.
Алгоритм NPS-MS использует набор данных из 1872 спектрографических образцов для сопоставления 624 новых психоактивных веществ. Ван подчеркнул, что благодаря машинному обучению нет ограничений на количество соединений, которые можно включить в набор.
Ван говорит, что около 40 тыс. молекул имеют спектрометрические данные высокого разрешения, доступные судебно-медицинским командам для отсылок к неизвестным веществам. И это должно значительно удешевить анализ для лабораторий, которым в противном случае приходится обращаться к базам данных с более чем 100 млн известных химических веществ. То есть NPS-MS должен значительно сократить объём работы лабораторий.
Фэй Ван — докторант кафедры компьютерных наук Университета Альберты, Канада. Он объяснил, что наркотики — это небольшая группа очень похожих веществ, которые имитируют воздействие на организм, например, кокаина или метамфетамина. Но их формулы хитрые производители часто меняют для обхода законов.
За последнее десятилетие было синтезировано более 1000 таких веществ, чтобы обманывать контролирующие органы, которые не успевают оперативно учитывать новые химические аналоги. Обычная работа с целью выявить новинки наркорынка требует трудоёмкого тестирования для получения информации, которая могла бы подтвердить наличие неизвестного вещества.
Фэй Ван начал с программирования инструментов машинного обучения, чтобы изучать человеческие метаболиты (продукты обмена веществ) и молекулы. После адаптации метода машинного обучения для идентификации новых психоактивных веществ, NPS-MS обучили с использованием результатов генеративной модели DarkNPS. Она предназначена для предварительного выявления, то есть прогнозирования, вероятных соединений из разряда NPS.
Затем исследователи из Дании заметили, что вычислительная технология Вана может применяться для идентификации новых психоактивных веществ. Тогда NPS-MS успешно идентифицировала вариант наркотика на основе фенциклидина, более известного как PCP.
Алгоритм NPS-MS использует набор данных из 1872 спектрографических образцов для сопоставления 624 новых психоактивных веществ. Ван подчеркнул, что благодаря машинному обучению нет ограничений на количество соединений, которые можно включить в набор.
Ван говорит, что около 40 тыс. молекул имеют спектрометрические данные высокого разрешения, доступные судебно-медицинским командам для отсылок к неизвестным веществам. И это должно значительно удешевить анализ для лабораторий, которым в противном случае приходится обращаться к базам данных с более чем 100 млн известных химических веществ. То есть NPS-MS должен значительно сократить объём работы лабораторий.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

«Мусор» из глубин Барсучьего логова оказался ценнейшими артефактами таинственного индейского племени
Археологи говорят: в горах Герреро будет еще масса сенсационных открытий....

Ученые бьют тревогу: Мировой океан стремительно темнеет
Почему эти изменения опасны для всей планеты?...

Раскрыта тайна поразительной живучести чумной бактерии
Быть слабым, чтобы убивать больше — такого парадокса ученые и представить не могли....

Казнь «ведьмы» в средневековом Лондоне продолжалась... две недели
Мох, тростник и сломанные кости поведали один из самых жутких эпизодов в истории Британии....

США грозит «астероидная слепота»: NASA не будет видеть особо опасные объекты
Были надежды на новый телескоп, но их в буквальном смысле убил новый президент....

В лунных кратерах нашли «золота и бриллиантов» на триллион долларов
Западные эксперты с сожалением говорят, что открытые сокровища, скорее всего, достанутся России и Китаю....

Космический телескоп показал, как микроскопические камешки создали... один из самых раскаленных миров в Галактике
«Каменные» облака, «металлический» воздух — планета Тилос не устает поражать астрофизиков....

Еще полвека назад у ЦРУ уже был ядерный дрон, способный облететь вокруг Земли на одном заряде
Эксперты рассказали, что почему не взлетел сверхсекретный проект «Аквилайн», на десятилетия опередивший время....