
Студенческое КБ разработало проект российского космического лазерного терминала связи
Студенческое конструкторское бюро МФТИ работает над созданием современного компактного лазерного терминала связи, способного совершить революцию в передаче данных на наземные станции и обеспечить быструю связь между различными устройствами. Кроме того, этот терминал может похвастаться такими замечательными характеристиками, как компактный размер, высокая эффективность и минимальное энергопотребление, что делает его пригодным для использования даже на относительно небольших космических аппаратах типа CubeSat.
Для того чтобы объекты на космических орбитах могли взаимодействовать друг с другом в режиме реального времени, необходимо поддерживать скорость передачи данных не менее нескольких сотен миллионов бит в секунду. Кроме того, крайне важно иметь метод связи, который не сталкивается с проблемами помех, обычно связанных с радиоволнами.
Иван Колесников, студент 5-го курса ФАКТ МФТИ и соавтор проекта, поделился некоторыми интересными подробностями. Он сообщил, что устройство работает с уровнем энергопотребления 15 Вт и впечатляющей скоростью передачи данных 100 Мбит/с. Кроме того, расстояние связи, достижимое с помощью этого терминала, достигает 1500 километров. Эти характеристики действительно иллюстрируют расширенные возможности творения студентов МФТИ.
Лазерная система, разработанная Физико-технической школой аэрофизики и космических исследований МФТИ, может совершить революцию в области связи с орбитой и космосом. В основном это связано с его способностью обеспечивать высокую пропускную способность, что является значительным улучшением по сравнению с традиционными радиосистемами.
В отличие от радиоволн, лазерные лучи рассеиваются не так сильно, что приводит к более высокой плотности излучения в целевом секторе. Эта характеристика устраняет необходимость размещения приемников на расстоянии десятков метров, поскольку когерентность лазерного луча значительно выше, чем у радиоизлучателей.
Разработчики тщательно подошли к созданию устройства. Корпус терминала тщательно изготовлен из алюминия с использованием точности фрезерного станка с ЧПУ. Кроме того, некоторые части терминала были созданы с использованием технологии 3D-печати.
В сложной системе излучение направляется на длиннофокусную собирающую линзу, точно фокусируется двумя серебряными зеркалами и в конечном итоге направляется на четырехквадратный фотодиод. Далее полученный сигнал направляется в коллиматор, который эффективно передает его по оптическому волокну.
В настоящее время команда занимается разработкой четвертой редакции макета терминала космической связи. Студенты провели оценку производительности плат с помощью специально изготовленного испытательного стенда, включавшего внешний лазер, осциллограф и два вращающихся поляризационных фильтра. Предстоящая четвертая версия терминала будет включать ряд усовершенствований, включая улучшенную оптическую систему, обновленную компоновку и электрическую систему, полностью совместимую с реальным устройством. Терминал обеспечивает непревзойденную производительность с точки зрения управления сигналом.
Для того чтобы объекты на космических орбитах могли взаимодействовать друг с другом в режиме реального времени, необходимо поддерживать скорость передачи данных не менее нескольких сотен миллионов бит в секунду. Кроме того, крайне важно иметь метод связи, который не сталкивается с проблемами помех, обычно связанных с радиоволнами.
Иван Колесников, студент 5-го курса ФАКТ МФТИ и соавтор проекта, поделился некоторыми интересными подробностями. Он сообщил, что устройство работает с уровнем энергопотребления 15 Вт и впечатляющей скоростью передачи данных 100 Мбит/с. Кроме того, расстояние связи, достижимое с помощью этого терминала, достигает 1500 километров. Эти характеристики действительно иллюстрируют расширенные возможности творения студентов МФТИ.
Лазерная система, разработанная Физико-технической школой аэрофизики и космических исследований МФТИ, может совершить революцию в области связи с орбитой и космосом. В основном это связано с его способностью обеспечивать высокую пропускную способность, что является значительным улучшением по сравнению с традиционными радиосистемами.
В отличие от радиоволн, лазерные лучи рассеиваются не так сильно, что приводит к более высокой плотности излучения в целевом секторе. Эта характеристика устраняет необходимость размещения приемников на расстоянии десятков метров, поскольку когерентность лазерного луча значительно выше, чем у радиоизлучателей.
Разработчики тщательно подошли к созданию устройства. Корпус терминала тщательно изготовлен из алюминия с использованием точности фрезерного станка с ЧПУ. Кроме того, некоторые части терминала были созданы с использованием технологии 3D-печати.
В сложной системе излучение направляется на длиннофокусную собирающую линзу, точно фокусируется двумя серебряными зеркалами и в конечном итоге направляется на четырехквадратный фотодиод. Далее полученный сигнал направляется в коллиматор, который эффективно передает его по оптическому волокну.
В настоящее время команда занимается разработкой четвертой редакции макета терминала космической связи. Студенты провели оценку производительности плат с помощью специально изготовленного испытательного стенда, включавшего внешний лазер, осциллограф и два вращающихся поляризационных фильтра. Предстоящая четвертая версия терминала будет включать ряд усовершенствований, включая улучшенную оптическую систему, обновленную компоновку и электрическую систему, полностью совместимую с реальным устройством. Терминал обеспечивает непревзойденную производительность с точки зрения управления сигналом.
- Евгения Бусина
- mipt.ru
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...