Студенческое КБ разработало проект российского космического лазерного терминала связи
Студенческое конструкторское бюро МФТИ работает над созданием современного компактного лазерного терминала связи, способного совершить революцию в передаче данных на наземные станции и обеспечить быструю связь между различными устройствами. Кроме того, этот терминал может похвастаться такими замечательными характеристиками, как компактный размер, высокая эффективность и минимальное энергопотребление, что делает его пригодным для использования даже на относительно небольших космических аппаратах типа CubeSat.
Для того чтобы объекты на космических орбитах могли взаимодействовать друг с другом в режиме реального времени, необходимо поддерживать скорость передачи данных не менее нескольких сотен миллионов бит в секунду. Кроме того, крайне важно иметь метод связи, который не сталкивается с проблемами помех, обычно связанных с радиоволнами.
Иван Колесников, студент 5-го курса ФАКТ МФТИ и соавтор проекта, поделился некоторыми интересными подробностями. Он сообщил, что устройство работает с уровнем энергопотребления 15 Вт и впечатляющей скоростью передачи данных 100 Мбит/с. Кроме того, расстояние связи, достижимое с помощью этого терминала, достигает 1500 километров. Эти характеристики действительно иллюстрируют расширенные возможности творения студентов МФТИ.
Лазерная система, разработанная Физико-технической школой аэрофизики и космических исследований МФТИ, может совершить революцию в области связи с орбитой и космосом. В основном это связано с его способностью обеспечивать высокую пропускную способность, что является значительным улучшением по сравнению с традиционными радиосистемами.
В отличие от радиоволн, лазерные лучи рассеиваются не так сильно, что приводит к более высокой плотности излучения в целевом секторе. Эта характеристика устраняет необходимость размещения приемников на расстоянии десятков метров, поскольку когерентность лазерного луча значительно выше, чем у радиоизлучателей.
Разработчики тщательно подошли к созданию устройства. Корпус терминала тщательно изготовлен из алюминия с использованием точности фрезерного станка с ЧПУ. Кроме того, некоторые части терминала были созданы с использованием технологии 3D-печати.
В сложной системе излучение направляется на длиннофокусную собирающую линзу, точно фокусируется двумя серебряными зеркалами и в конечном итоге направляется на четырехквадратный фотодиод. Далее полученный сигнал направляется в коллиматор, который эффективно передает его по оптическому волокну.
В настоящее время команда занимается разработкой четвертой редакции макета терминала космической связи. Студенты провели оценку производительности плат с помощью специально изготовленного испытательного стенда, включавшего внешний лазер, осциллограф и два вращающихся поляризационных фильтра. Предстоящая четвертая версия терминала будет включать ряд усовершенствований, включая улучшенную оптическую систему, обновленную компоновку и электрическую систему, полностью совместимую с реальным устройством. Терминал обеспечивает непревзойденную производительность с точки зрения управления сигналом.
Для того чтобы объекты на космических орбитах могли взаимодействовать друг с другом в режиме реального времени, необходимо поддерживать скорость передачи данных не менее нескольких сотен миллионов бит в секунду. Кроме того, крайне важно иметь метод связи, который не сталкивается с проблемами помех, обычно связанных с радиоволнами.
Иван Колесников, студент 5-го курса ФАКТ МФТИ и соавтор проекта, поделился некоторыми интересными подробностями. Он сообщил, что устройство работает с уровнем энергопотребления 15 Вт и впечатляющей скоростью передачи данных 100 Мбит/с. Кроме того, расстояние связи, достижимое с помощью этого терминала, достигает 1500 километров. Эти характеристики действительно иллюстрируют расширенные возможности творения студентов МФТИ.
Лазерная система, разработанная Физико-технической школой аэрофизики и космических исследований МФТИ, может совершить революцию в области связи с орбитой и космосом. В основном это связано с его способностью обеспечивать высокую пропускную способность, что является значительным улучшением по сравнению с традиционными радиосистемами.
В отличие от радиоволн, лазерные лучи рассеиваются не так сильно, что приводит к более высокой плотности излучения в целевом секторе. Эта характеристика устраняет необходимость размещения приемников на расстоянии десятков метров, поскольку когерентность лазерного луча значительно выше, чем у радиоизлучателей.
Разработчики тщательно подошли к созданию устройства. Корпус терминала тщательно изготовлен из алюминия с использованием точности фрезерного станка с ЧПУ. Кроме того, некоторые части терминала были созданы с использованием технологии 3D-печати.
В сложной системе излучение направляется на длиннофокусную собирающую линзу, точно фокусируется двумя серебряными зеркалами и в конечном итоге направляется на четырехквадратный фотодиод. Далее полученный сигнал направляется в коллиматор, который эффективно передает его по оптическому волокну.
В настоящее время команда занимается разработкой четвертой редакции макета терминала космической связи. Студенты провели оценку производительности плат с помощью специально изготовленного испытательного стенда, включавшего внешний лазер, осциллограф и два вращающихся поляризационных фильтра. Предстоящая четвертая версия терминала будет включать ряд усовершенствований, включая улучшенную оптическую систему, обновленную компоновку и электрическую систему, полностью совместимую с реальным устройством. Терминал обеспечивает непревзойденную производительность с точки зрения управления сигналом.
- Евгения Бусина
- mipt.ru
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Загадочный взрыв над Москвой: зачем NASA срочно удалило все данные об объекте 2025 US6?
И почему эксперты говорят, что мы никогда не узнаем правды?...
В России обнаружена рыба, которая 70 лет считалась полностью вымершей
И не единственная такая сенсация в нашей стране за последние годы...
Российские ученые создали уникальный материал будущего: новый металл прочнее любой стали, но дешевле даже алюминия
Мир высоких технологий ждал этого открытия десятилетия. Наша страна получила реальный шанс стать лидером металлургии...
«Парящие» берлоги: Как треугольные дома помогут России удержать Арктику
Кто победит? Глобальное изменение климата или новые технологии?...
1300 лет назад неизвестные грабители вскрыли гробницу знатного воина, но вообще не тронули сокровищ. Почему?
Венгерские археологи уверены, что разгадали этот мистический детектив. Но так ли это на самом деле?...
Тающий лед Антарктиды прячет от нас глубинную «бомбу» замедленного действия
Неожиданный климатический парадокс: малая беда хранит человечество от большой. Но это ненадолго...
Россия снова первая: в космосе вырастили идеальные кристаллы!
Рассказываем, почему проект «Экран-М» может стать началом новой эры полупроводников, где Россия будет ведущей в мире...
Какие тайны скрывает 40 000-летний... карандаш, найденный в одной из пещер Крыма?
И почему ученые уверены, что эта находка заставляет в корне пересмотреть древнейшую историю человечества?...
Тайна изумрудной мумии, не дававшей покоя ученым 38 лет, наконец-то разгадана!
Ученые признаются: они не ожидали, что им придется раскрыть самый настоящий химический детектив...
«Инопланетный зонд», который преследует Землю, был сделан… в СССР?
Почему известный гарвардский астроном выдвинул именно эту версию?...
Эксперимент показал, что на самом деле творится под марсианскими дюнами каждую весну
Оказалось, что с наступлением тепла на Красной планете активизируются... ледяные «кроты»...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...