Ученые рассказали, как человеческому мозгу удается конкурировать с темпами обучаемости ИИ
Способ, которым нейронная сеть «обучается» всем своим действиям основан на сложном алгоритмическом подражании механизмам человеческого мышления. Несмотря на внешнюю схожесть выходного результата: например — нейросеть может нарисовать изображение похожее на стоковое фото — достаточно беглого взгляда на такую картинку, чтобы испытать эффект зловещей долины.
Так каким же образом человеческий мозг отличает «механически» созданный контент от реальных фотографий? И, что еще интереснее, что позволяет нашему мозгу быть успешнее в процессе работы и обучения, чем алгоритму с колоссальной базой данных? Все дело в количестве так называемых «слоев» определяющих глубину метода преобразования данных.
Архитектуры глубокого обучения обычно состоят из многочисленных слоев, которые могут быть увеличены до сотен, что позволяет эффективно изучать сложные задачи классификации. Контрастно мозг состоит из очень небольшого количества слоев, но, несмотря на свою мелкую архитектуру и шумную и медленную динамику, он может эффективно выполнять сложные задачи классификации.
Метод глубокого обучения, используемый ИИ, предполагает создание архитектуры состоящей из множества «слоев» — алгоритмических подуровней, предназначенных для решения сложных задач по классификации данных. Мозг человека, выполняющий схожие задачи напротив — работает с гораздо менее глубокой системой алгоритмов, отличается медленной и более «шумной» динамикой поведения. Как это возможно?

Фрагмент из презентации, демонстрирующей принципиальную разницу подходов к систематизации данных по методам глубокого и поверхностного обучения.
В новом исследовании опубликованном в журнале Physica A под названием «Статистическая механика и ее Приложения» ученые попытались дать ответ на этот вопрос. В новой работе специалистов Израильского университета Бар-Илан демонстрируется гипотетический механизм, лежащий в основе настолько эффективного обучения человеческого мозга и проводится сравнение с механикой глубокого обучения ИИ.
— Идо Кантер, профессор Отделения физики (Multidisciplinary Brain Research Center) Бар-Илана, руководитель исследования.
При этом для современных высокопроизводительных gpu реализация неглубокого принципа обучения принципиально невозможна по причине отсутствия соответствующей архитектуры.
Так каким же образом человеческий мозг отличает «механически» созданный контент от реальных фотографий? И, что еще интереснее, что позволяет нашему мозгу быть успешнее в процессе работы и обучения, чем алгоритму с колоссальной базой данных? Все дело в количестве так называемых «слоев» определяющих глубину метода преобразования данных.
Разный подход к восприятию информации
Архитектуры глубокого обучения обычно состоят из многочисленных слоев, которые могут быть увеличены до сотен, что позволяет эффективно изучать сложные задачи классификации. Контрастно мозг состоит из очень небольшого количества слоев, но, несмотря на свою мелкую архитектуру и шумную и медленную динамику, он может эффективно выполнять сложные задачи классификации.
Метод глубокого обучения, используемый ИИ, предполагает создание архитектуры состоящей из множества «слоев» — алгоритмических подуровней, предназначенных для решения сложных задач по классификации данных. Мозг человека, выполняющий схожие задачи напротив — работает с гораздо менее глубокой системой алгоритмов, отличается медленной и более «шумной» динамикой поведения. Как это возможно?
Фрагмент из презентации, демонстрирующей принципиальную разницу подходов к систематизации данных по методам глубокого и поверхностного обучения.
В новом исследовании опубликованном в журнале Physica A под названием «Статистическая механика и ее Приложения» ученые попытались дать ответ на этот вопрос. В новой работе специалистов Израильского университета Бар-Илан демонстрируется гипотетический механизм, лежащий в основе настолько эффективного обучения человеческого мозга и проводится сравнение с механикой глубокого обучения ИИ.
В отличие от архитектуры глубокого обучения, которую можно сравнить с небоскребом, человеческий мозг построен по принципу неглубокой архитектуры с малым числом слоев, больше похожей на широкое здание с небольшим количеством этажей.
При этом расширенная и углубленная архитектуры представляют собой два взаимодополняющих механизма
При этом расширенная и углубленная архитектуры представляют собой два взаимодополняющих механизма
— Идо Кантер, профессор Отделения физики (Multidisciplinary Brain Research Center) Бар-Илана, руководитель исследования.
При этом для современных высокопроизводительных gpu реализация неглубокого принципа обучения принципиально невозможна по причине отсутствия соответствующей архитектуры.
- Алексей Павлов
- Prof. Ido Kanter, Bar-Ilan University
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Парадокс Великой Зеленой стены: Китай посадил 78 миллиардов новых деревьев, но климат стал только хуже. Как так вышло?
Ученые назвали причины, почему самый грандиозный экологический проект за всю историю в итоге обернулся головной болью для миллионов китайских граждан...
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
Меньше трех дней до конца света на орбите: почему программа CRASH Clock бьет тревогу?
Сотрудники Маска уверяют, что у них все под контролем. Но эксперты сравнивают орбиту с карточным домиком. Кто же прав?...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Темная сторона Рима: выяснилось, что Империя веками «выкачивала» здоровье из покоренных народов
Новые находки заставили ученых признать: для простых людей римский «прогресс» был скорее приговором, чем спасением. Но почему же так вышло?...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Встречи с неведомым: завершаем чтение дневников разведчика и писателя Владимира Арсеньева
Часть третья: таинственный огонь в лесу, свет из облаков, призрак в тумане и странный дым на море...
Первая «чернокожая британка» оказалась белой: новое исследование заставило историков полностью пересмотреть портрет женщины из Бичи-Хед
Почему ученые так сильно ошиблись с ее внешностью? И стоит ли после этого доверять реконструкциям по ДНК?...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
Спутники 20 лет следили за планетой и нашли «климатические хроноаномалии»
Разгадка тайны оказалась неожиданной даже для ученых...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...