
Ученые рассказали, как человеческому мозгу удается конкурировать с темпами обучаемости ИИ
Способ, которым нейронная сеть «обучается» всем своим действиям основан на сложном алгоритмическом подражании механизмам человеческого мышления. Несмотря на внешнюю схожесть выходного результата: например — нейросеть может нарисовать изображение похожее на стоковое фото — достаточно беглого взгляда на такую картинку, чтобы испытать эффект зловещей долины.
Так каким же образом человеческий мозг отличает «механически» созданный контент от реальных фотографий? И, что еще интереснее, что позволяет нашему мозгу быть успешнее в процессе работы и обучения, чем алгоритму с колоссальной базой данных? Все дело в количестве так называемых «слоев» определяющих глубину метода преобразования данных.
Архитектуры глубокого обучения обычно состоят из многочисленных слоев, которые могут быть увеличены до сотен, что позволяет эффективно изучать сложные задачи классификации. Контрастно мозг состоит из очень небольшого количества слоев, но, несмотря на свою мелкую архитектуру и шумную и медленную динамику, он может эффективно выполнять сложные задачи классификации.
Метод глубокого обучения, используемый ИИ, предполагает создание архитектуры состоящей из множества «слоев» — алгоритмических подуровней, предназначенных для решения сложных задач по классификации данных. Мозг человека, выполняющий схожие задачи напротив — работает с гораздо менее глубокой системой алгоритмов, отличается медленной и более «шумной» динамикой поведения. Как это возможно?

Фрагмент из презентации, демонстрирующей принципиальную разницу подходов к систематизации данных по методам глубокого и поверхностного обучения.
В новом исследовании опубликованном в журнале Physica A под названием «Статистическая механика и ее Приложения» ученые попытались дать ответ на этот вопрос. В новой работе специалистов Израильского университета Бар-Илан демонстрируется гипотетический механизм, лежащий в основе настолько эффективного обучения человеческого мозга и проводится сравнение с механикой глубокого обучения ИИ.
— Идо Кантер, профессор Отделения физики (Multidisciplinary Brain Research Center) Бар-Илана, руководитель исследования.
При этом для современных высокопроизводительных gpu реализация неглубокого принципа обучения принципиально невозможна по причине отсутствия соответствующей архитектуры.
Так каким же образом человеческий мозг отличает «механически» созданный контент от реальных фотографий? И, что еще интереснее, что позволяет нашему мозгу быть успешнее в процессе работы и обучения, чем алгоритму с колоссальной базой данных? Все дело в количестве так называемых «слоев» определяющих глубину метода преобразования данных.
Разный подход к восприятию информации
Архитектуры глубокого обучения обычно состоят из многочисленных слоев, которые могут быть увеличены до сотен, что позволяет эффективно изучать сложные задачи классификации. Контрастно мозг состоит из очень небольшого количества слоев, но, несмотря на свою мелкую архитектуру и шумную и медленную динамику, он может эффективно выполнять сложные задачи классификации.
Метод глубокого обучения, используемый ИИ, предполагает создание архитектуры состоящей из множества «слоев» — алгоритмических подуровней, предназначенных для решения сложных задач по классификации данных. Мозг человека, выполняющий схожие задачи напротив — работает с гораздо менее глубокой системой алгоритмов, отличается медленной и более «шумной» динамикой поведения. Как это возможно?

Фрагмент из презентации, демонстрирующей принципиальную разницу подходов к систематизации данных по методам глубокого и поверхностного обучения.
В новом исследовании опубликованном в журнале Physica A под названием «Статистическая механика и ее Приложения» ученые попытались дать ответ на этот вопрос. В новой работе специалистов Израильского университета Бар-Илан демонстрируется гипотетический механизм, лежащий в основе настолько эффективного обучения человеческого мозга и проводится сравнение с механикой глубокого обучения ИИ.
В отличие от архитектуры глубокого обучения, которую можно сравнить с небоскребом, человеческий мозг построен по принципу неглубокой архитектуры с малым числом слоев, больше похожей на широкое здание с небольшим количеством этажей.
При этом расширенная и углубленная архитектуры представляют собой два взаимодополняющих механизма
При этом расширенная и углубленная архитектуры представляют собой два взаимодополняющих механизма
— Идо Кантер, профессор Отделения физики (Multidisciplinary Brain Research Center) Бар-Илана, руководитель исследования.
При этом для современных высокопроизводительных gpu реализация неглубокого принципа обучения принципиально невозможна по причине отсутствия соответствующей архитектуры.
- Алексей Павлов
- Prof. Ido Kanter, Bar-Ilan University
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...

2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...