ВСЛУХ

Фотоны в новом свете: ученый открыл революционный принцип обнаружения с помощью модуляции частоты

Фотоны в новом свете: ученый открыл революционный принцип обнаружения с помощью модуляции частоты
Обнаружение длинноволнового инфракрасного света (LWIR) при комнатной температуре является давней проблемой из-за низкой энергии фотонов. Недорогой, высокопроизводительный LWIR-детектор или камера, работающая в таких условиях, разрабатываются десятилетиями. Исследователь из Университета Центральной Флориды Дебашис Чанда, профессор Центра нанотехнологий, разработал новую технику обнаружения фотонов — элементарных частиц, которые охватывают диапазон от видимого света до радиочастот и играют важную роль в передаче сотовой связи.


Этот прогресс может привести к появлению более точных и эффективных технологий в различных областях: от улучшения медицинских систем визуализации и связи до расширения научных исследований и даже потенциального усиления мер безопасности.

Обнаружение фотонов обычно основывается на изменении/модуляции напряжения или амплитуды тока. Но Чанда разработал способ обнаружения фотонов путем модуляции частоты колебательного контура, прокладывая путь к сверхчувствительному обнаружению фотонов.

В методе Чанды используется специальный материал с фазовым изменением (PCM), который меняет свою форму при касании света, создавая постоянный электрический ритм или стабильные колебания электрической цепи. Когда световой фотон попадает в материал, он меняет скорость ритма или смещает частоту колебаний. Насколько сильно изменится ритм, зависит от силы света, подобно тому, как голос человека меняет звук по радио. Новая разработка была недавно опубликована в журнале Advanced Functional Materials.

Фотоны в новом свете: ученый открыл революционный принцип обнаружения с помощью модуляции частоты
Исследователь UCF Дебашис Чанда является экспертом в области инфракрасной визуализации.


Обнаружение длинноволнового инфракрасного излучения (LWIR) в диапазоне длин волн от 8 до 12 микрометров чрезвычайно важно в астрономии, климатологии, анализе материалов и безопасности. Однако обнаружение LWIR при комнатной температуре было давней проблемой из-за низкой энергии фотонов. Доступные в настоящее время детекторы LWIR можно разделить на два типа: охлаждаемые и неохлаждаемые детекторы, причем оба имеют свои ограничения.

Хотя охлаждаемые детекторы обеспечивают превосходную обнаруживаемость, они требуют криогенного охлаждения, что делает их дорогими и ограничивает их практическое применение. С другой стороны, неохлаждаемые детекторы могут работать при комнатной температуре, но имеют низкую обнаруживаемость и медленный отклик из-за более высокого теплового шума, свойственного работе при комнатной температуре. Недорогой, высокочувствительный и быстрый инфракрасный детектор/камера продолжает решать научные и технологические проблемы. Это основная причина, по которой камеры LWIR не используются широко, за исключением Министерства обороны и космических приложений.

В отличие от всех существующих схем обнаружения фотонов, где мощность света меняет амплитуду напряжения или тока (амплитудная модуляция — АМ), в предлагаемой схеме попадания или падения фотонов модулируют частоту колебательного контура и детектируются как сдвиг частоты, предлагая внутреннюю устойчивость к шумам, которые по своей природе являются AM

Наш подход, основанный на FM, обеспечивает выдающуюся мощность, эквивалентную шуму при комнатной температуре, время отклика и обнаруживаемость. Эта общая концепция обнаружения фотонов на основе FM может быть реализована в любом спектральном диапазоне на основе других материалов с фазовым переходом.

Результаты представляют этот новый FM-детектор как уникальную платформу для создания недорогих и высокоэффективных неохлаждаемых инфракрасных детекторов и систем визуализации для различных приложений, таких как дистанционное зондирование, тепловидение и медицинская диагностика. Мы твердо убеждены, что производительность можно еще больше повысить с помощью надлежащей установки промышленного масштаба

— Дебашис Чанда.

Концепция, разработанная группой Chanda, обеспечивает сдвиг парадигмы в сторону высокочувствительного неохлаждаемого обнаружения LWIR, поскольку шум ограничивает чувствительность обнаружения. Результат обещает новую неохлаждаемую схему обнаружения LWIR, которая отличается высокой чувствительностью, низкой стоимостью и может быть легко интегрирована с электронными схемами считывания без необходимости сложной гибридизации.

Автор:

Мы в Мы в Яндекс Дзен
Учёные «подсмотрели» рецепт энергосберегающей плазмонной краски у бабочекМиллиарды одиночных фотонов в секунду: новый рекорд квантовой эффективности

Нас ждет новая пандемия?

Нас ждет новая пандемия?

Африка в очередной раз подтвердила, что она — инкубатор смертельно опасных вирусов....
  • 643