
Исследователи поймали протоны в процессе диссоциации с помощью сверхбыстрой «электронной камеры»
Протоны — ключевые элементы множества биологических и химических реакций, но их движение очень сложно отследить. Они переносятся из одной молекулы в другую за несколько фемтосекунд, то есть одну миллионную миллиардной доли секунды. Чтобы понять, как меняется структура молекул во время таких реакций, ученым нужно уметь «снимать» протоны с очень высокой скоростью и точностью.
Одним из возможных способов сделать это является использование ультрабыстрой электронной дифракции (UED). Это метод, при котором пучок электронов проходит через образец и рассеивается на его атомах. По углам и интенсивности рассеянных электронов можно восстановить структуру образца в разные моменты времени.
Команда исследователей из Национальной лаборатории ускорителей SLAC и Стэнфордского университета в США впервые успешно применила UED для записи движения протонов в молекулах аммиака. Аммиак состоит из одного атома азота и трех атомов водорода. Ученые облучали аммиак ультрафиолетовым светом, вызывая разрыв одной из связей между азотом и водородом, а затем стреляли по нему электронами и регистрировали рассеянные электронные сигналы. Результаты их эксперимента были опубликованы 5 октября 2023 года в журнале Physical Review Letters.

Облучение аммиака, который состоит из одного азота и трех атомов водорода, ультрафиолетовым светом приводит к диссоциации одного водорода от аммиака. Исследователи SLAC использовали сверхбыструю «электронную камеру», чтобы точно наблюдать, что делает водород во время диссоциации. Техника была предложена, но ее эффективность до сих пор так и не была доказана. В будущем исследователи смогут использовать эту технику для изучения переноса водорода — критических химических реакций, которые управляют многими биологическими процессами.
Исследователи использовали электроны с высокой энергией — несколько Мегаэлектронвольт (MeV). Это позволило им получить более четкие изображения протонов, которые имеют очень маленькую массу и заряд по сравнению с другими ядрами. Кроме того, электроны с высокой энергией лучше проникают через газообразный образец, что уменьшает шум на детекторе.
Ученые не только застали сигналы от протона, отделяющегося от ядра азота, но и зафиксировали связанное с этим изменение структуры молекулы. Более того, рассеянные электроны летели под разными углами, поэтому ученые смогли разделить два сигнала.
— Томас Вольф, ученый из SLAC и ведущий автор статьи.
Эксперимент доказал, что UED может быть мощным инструментом для изучения переноса протонов — критически важных химических реакций, которые лежат в основе многих биологических процессов. Например, перенос протонов играет роль в работе ферментов, которые помогают катализировать биохимические реакции, и протонных насосов, необходимых для митохондрий, «энергетических станций» клеток. В будущем ученые смогут использовать UED для наблюдения за такими реакциями в реальном времени и понимания их механизмов.
UED — один из методов, которые используются в Центре ультрабыстрой науки SLAC (ULTRA), где исследуются сверхбыстрые процессы в атомах, молекулах и материалах. Центр объединяет экспертизу и оборудование из разных отделов лаборатории, включая линейный ускоритель, светимость искусственного солнца (LCLS) и научный институт Стэнфорда по фотонике и квантовой информации (SPOQI). В дальнейшем ученые планируют совмещать UED с другими методами, такими как лазерная спектроскопия и рентгеновская дифракция, для получения более полной картины динамики протонов.
Одним из возможных способов сделать это является использование ультрабыстрой электронной дифракции (UED). Это метод, при котором пучок электронов проходит через образец и рассеивается на его атомах. По углам и интенсивности рассеянных электронов можно восстановить структуру образца в разные моменты времени.
Команда исследователей из Национальной лаборатории ускорителей SLAC и Стэнфордского университета в США впервые успешно применила UED для записи движения протонов в молекулах аммиака. Аммиак состоит из одного атома азота и трех атомов водорода. Ученые облучали аммиак ультрафиолетовым светом, вызывая разрыв одной из связей между азотом и водородом, а затем стреляли по нему электронами и регистрировали рассеянные электронные сигналы. Результаты их эксперимента были опубликованы 5 октября 2023 года в журнале Physical Review Letters.

Облучение аммиака, который состоит из одного азота и трех атомов водорода, ультрафиолетовым светом приводит к диссоциации одного водорода от аммиака. Исследователи SLAC использовали сверхбыструю «электронную камеру», чтобы точно наблюдать, что делает водород во время диссоциации. Техника была предложена, но ее эффективность до сих пор так и не была доказана. В будущем исследователи смогут использовать эту технику для изучения переноса водорода — критических химических реакций, которые управляют многими биологическими процессами.
Исследователи использовали электроны с высокой энергией — несколько Мегаэлектронвольт (MeV). Это позволило им получить более четкие изображения протонов, которые имеют очень маленькую массу и заряд по сравнению с другими ядрами. Кроме того, электроны с высокой энергией лучше проникают через газообразный образец, что уменьшает шум на детекторе.
Ученые не только застали сигналы от протона, отделяющегося от ядра азота, но и зафиксировали связанное с этим изменение структуры молекулы. Более того, рассеянные электроны летели под разными углами, поэтому ученые смогли разделить два сигнала.
То, что мы имеем нечто, что чувствительно к электронам, и что-то, что чувствительно к ядрам в рамках одного эксперимента, очень полезно
— Томас Вольф, ученый из SLAC и ведущий автор статьи.
Эксперимент доказал, что UED может быть мощным инструментом для изучения переноса протонов — критически важных химических реакций, которые лежат в основе многих биологических процессов. Например, перенос протонов играет роль в работе ферментов, которые помогают катализировать биохимические реакции, и протонных насосов, необходимых для митохондрий, «энергетических станций» клеток. В будущем ученые смогут использовать UED для наблюдения за такими реакциями в реальном времени и понимания их механизмов.
UED — один из методов, которые используются в Центре ультрабыстрой науки SLAC (ULTRA), где исследуются сверхбыстрые процессы в атомах, молекулах и материалах. Центр объединяет экспертизу и оборудование из разных отделов лаборатории, включая линейный ускоритель, светимость искусственного солнца (LCLS) и научный институт Стэнфорда по фотонике и квантовой информации (SPOQI). В дальнейшем ученые планируют совмещать UED с другими методами, такими как лазерная спектроскопия и рентгеновская дифракция, для получения более полной картины динамики протонов.
- Алексей Павлов
- Nanna H. List/KTH Royal Institute of Technology
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

Генетики вычислили, какую страшную цену заплатили наши предки за высокий интеллект
Новое исследование еще раз доказало, что эволюция требует огромных жертв...

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

Астрофизики Гавайского университета неожиданно разгадали тайну… солнечного дождя
Рассказываем, почему новое открытие важно для каждого жителя Земли...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...