
Искусственный интеллект EfficientViT в девять раз улучшил зрение у беспилотных автомобилей
Автономное транспортное средство должно быстро и точно распознавать объекты, к которым приближается, от стоящего на холостом ходу грузовика доставки на углу до велосипедиста, несущегося к перекрёстку.
Новую систему искусственного интеллекта (ИИ) представили исследователи из Массачусетского технологического института (MIT) и совместная лаборатория MIT-IBM Watson AI Lab. EfficientViT — это мощная модель компьютерного зрения, которая быстро разбивает изображении на фрагменты по значению (семантике) с высоким разрешением в реальном времени. То есть благодаря изобретению движущийся автомобиль без водителя сразу же распознаёт, где перед ним люди и другие машины. Беспилотный транспорт благодаря бортовому компьютеру с EfficientViT может определить за доли секунды, что означает: обрабатывается каждый пиксель изображения с высоким разрешением, чтобы не упускать объекты из виду.
Но эта задача, известная как семантическая сегментация, сложна и требует огромного объёма вычислений. Иные модели для этого напрямую анализируют взаимодействие между каждой парой пикселей на изображении. Поэтому их вычисления множатся в квадратной степени по мере увеличения разрешения. Так что даже точные модели слишком медленны для обработки изображений на периферийном устройстве, таком как смартфоны. Чтобы ускорить систему, исследователи MIT разработали иную модель семантической сегментации. Она обеспечивает те же возможности, что и другие, но с линейной вычислительной сложностью и аппаратно-эффективными операциями.
В результате получилась новая серия моделей компьютерного зрения высокого разрешения, которые при развёртывании на мобильном устройстве работают в девять раз быстрее, чем прочие. Важно отметить, что эта новая серия моделей продемонстрировала такую же или лучшую точность, чем альтернативы.
Необходимые для такого успеха преобразователи (трансформеры) изначально были созданы для обработки естественного языка. Они кодируют каждое слово в предложении как отличительный признак (маркер). А затем — генерируют карту внимания, которая фиксирует взаимосвязь каждого маркера с другими. Эта карта внимания помогает модели понимать текущее значение (контекст), когда та делает прогнозы.
Используя ту же концепцию для обработки изображений, преобразователь зрения разбивает видимое машиной на участки и кодирует каждый из них в маркер перед созданием карты внимания. При этом модель использует функцию подобия, которая напрямую изучает взаимодействие между каждой парой пикселей. Таким образом, модель развивает так называемое глобальное поле восприятия. То есть она может получить доступ ко всем частям изображения. Поскольку воспринимаемая сцена с высоким разрешением может содержать миллионы пикселей, разбитых на тысячи участков, карта внимания быстро становится огромной. И устройство начинает тормозить, как указано выше.
Для EfficientViT исследователи MIT использовали более простой механизм для построения карты внимания. Они заменили нелинейную функцию подобия линейной. Таким образом они могут изменять порядок операций, чтобы сократить общее количество вычислений без изменения функциональности. В их модели объём вычислений, необходимый для прогнозирования, с повышением разрешения картинки растёт линейно, по прямой, а не в квадратной степени.

Но профессор Сон Хан, первый автор научной работы, признал, что и в таком случае «бесплатного обеда не бывает». То есть линейное внимание фиксирует только общий контекст изображения, теряя частную информацию, что ухудшает точность. Чтобы компенсировать недостаток, исследователи включили в свою модель два дополнительных компонента, каждый из которых лишь ненамного повышает объём вычислений. Один из них помогает модели фиксировать взаимодействия локальных объектов. Второй модуль обеспечивает многомасштабное обучение, помогая EfficientViT распознавать как большие, так и маленькие объекты.
Из-за необходимости тщательно сбалансировать производительность и экономичность, EfficientViT разработали с аппаратно-ориентированной архитектурой, чтобы модель было проще запускать на различных типах устройств.
Основываясь на полученных результатах, исследователи хотят применить этот метод для ускорения генеративных моделей машинного обучения, которые используются для создания новых изображений. Они также хотят продолжить масштабирование EfficientViT для других визуальных задач. Например — в медицине.
Новую систему искусственного интеллекта (ИИ) представили исследователи из Массачусетского технологического института (MIT) и совместная лаборатория MIT-IBM Watson AI Lab. EfficientViT — это мощная модель компьютерного зрения, которая быстро разбивает изображении на фрагменты по значению (семантике) с высоким разрешением в реальном времени. То есть благодаря изобретению движущийся автомобиль без водителя сразу же распознаёт, где перед ним люди и другие машины. Беспилотный транспорт благодаря бортовому компьютеру с EfficientViT может определить за доли секунды, что означает: обрабатывается каждый пиксель изображения с высоким разрешением, чтобы не упускать объекты из виду.
Но эта задача, известная как семантическая сегментация, сложна и требует огромного объёма вычислений. Иные модели для этого напрямую анализируют взаимодействие между каждой парой пикселей на изображении. Поэтому их вычисления множатся в квадратной степени по мере увеличения разрешения. Так что даже точные модели слишком медленны для обработки изображений на периферийном устройстве, таком как смартфоны. Чтобы ускорить систему, исследователи MIT разработали иную модель семантической сегментации. Она обеспечивает те же возможности, что и другие, но с линейной вычислительной сложностью и аппаратно-эффективными операциями.
В результате получилась новая серия моделей компьютерного зрения высокого разрешения, которые при развёртывании на мобильном устройстве работают в девять раз быстрее, чем прочие. Важно отметить, что эта новая серия моделей продемонстрировала такую же или лучшую точность, чем альтернативы.
Необходимые для такого успеха преобразователи (трансформеры) изначально были созданы для обработки естественного языка. Они кодируют каждое слово в предложении как отличительный признак (маркер). А затем — генерируют карту внимания, которая фиксирует взаимосвязь каждого маркера с другими. Эта карта внимания помогает модели понимать текущее значение (контекст), когда та делает прогнозы.
Используя ту же концепцию для обработки изображений, преобразователь зрения разбивает видимое машиной на участки и кодирует каждый из них в маркер перед созданием карты внимания. При этом модель использует функцию подобия, которая напрямую изучает взаимодействие между каждой парой пикселей. Таким образом, модель развивает так называемое глобальное поле восприятия. То есть она может получить доступ ко всем частям изображения. Поскольку воспринимаемая сцена с высоким разрешением может содержать миллионы пикселей, разбитых на тысячи участков, карта внимания быстро становится огромной. И устройство начинает тормозить, как указано выше.
Для EfficientViT исследователи MIT использовали более простой механизм для построения карты внимания. Они заменили нелинейную функцию подобия линейной. Таким образом они могут изменять порядок операций, чтобы сократить общее количество вычислений без изменения функциональности. В их модели объём вычислений, необходимый для прогнозирования, с повышением разрешения картинки растёт линейно, по прямой, а не в квадратной степени.

Но профессор Сон Хан, первый автор научной работы, признал, что и в таком случае «бесплатного обеда не бывает». То есть линейное внимание фиксирует только общий контекст изображения, теряя частную информацию, что ухудшает точность. Чтобы компенсировать недостаток, исследователи включили в свою модель два дополнительных компонента, каждый из которых лишь ненамного повышает объём вычислений. Один из них помогает модели фиксировать взаимодействия локальных объектов. Второй модуль обеспечивает многомасштабное обучение, помогая EfficientViT распознавать как большие, так и маленькие объекты.
Из-за необходимости тщательно сбалансировать производительность и экономичность, EfficientViT разработали с аппаратно-ориентированной архитектурой, чтобы модель было проще запускать на различных типах устройств.
Основываясь на полученных результатах, исследователи хотят применить этот метод для ускорения генеративных моделей машинного обучения, которые используются для создания новых изображений. Они также хотят продолжить масштабирование EfficientViT для других визуальных задач. Например — в медицине.
- Дмитрий Ладыгин
- youtube.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Пес войны из вечной мерзлоты: российские ученые «воскресили» самого древнего спецназовца Сибири
Уникальная реконструкция Северо-Восточного федерального университета действительно потрясает!...

Сканирование «Титаника» раскрыло героические поступки на тонущем корабле
Появились сенсационные подробности последних часов гибнущего судна....

Аргентинские ученые предложили неожиданную разгадку тайны Антикитерского механизма
Возможно, он постоянно «зависал», как старый компьютер. Или был вообще… игрушкой....

Почему западные эксперты боятся российских спутников-призраков?
Собрали для вас информацию по новой секретной российской миссии....

В мозгах спецназовцев обнаружились скрытые аномалии
Новейшее исследование показало, что обычный МРТ вообще не видит некоторые травмы головы....

60 косаток разом напали на редкого кита у берегов Западной Австралии
Жестокость 40-минутной охоты ужаснула даже бывалых ученых....

Пока мир тонет в песках, эта пустыня стремительно зеленеет!
Ученые рассказали, почему Великая индийская пустыня стала на 38% зеленее всего за 20 лет....

В Австралии «поправили» гены ядовитых жаб и создали ненасытных каннибалов
Генетически модифицированная ага никогда не взрослеет....

В Индии растёт спрос на ноутбуки типа «Франкенштейн»
Индийская культура ремонта даёт новую жизнь «убитым» компьютерам....

Если бы не астероид, динозавры до сих пор жили бы на планете
Новое исследование показало, что древние ящеры не были обречены до глобальной катастрофы....

Общий наркоз стирает уникальность головного мозга
Открытие поможет выводить пациентов из комы....

Чужой бог в сердце Тикаля: Тайна алтаря, который хотели забыть
Археологи рассказали, почему майя стирали следы чужой цивилизации....

Археологи обнаружили в Египте 3400-летний затерянный город
Самое поразительное: он скрывался… под руинами древнегреческого некрополя....

В 30 раз экономнее, в 50 раз быстрее — вычислительная электроника переходит… на свет
Фотонные чипы отправляют кремний на пенсию?...

Живые громоотводы: раскрыта тайна деревьев, которые заставили молнию работать на себя
Ученые говорят, что Dipteryx oleifera переиграли саму природу....

Причина необъяснимых нападений морских львов на людей наконец-то раскрыта
Все дело в редком токсине, который заполонил прибрежные воды Калифорнии....