Искусственный интеллект EfficientViT в девять раз улучшил зрение у беспилотных автомобилей
Автономное транспортное средство должно быстро и точно распознавать объекты, к которым приближается, от стоящего на холостом ходу грузовика доставки на углу до велосипедиста, несущегося к перекрёстку.
Новую систему искусственного интеллекта (ИИ) представили исследователи из Массачусетского технологического института (MIT) и совместная лаборатория MIT-IBM Watson AI Lab. EfficientViT — это мощная модель компьютерного зрения, которая быстро разбивает изображении на фрагменты по значению (семантике) с высоким разрешением в реальном времени. То есть благодаря изобретению движущийся автомобиль без водителя сразу же распознаёт, где перед ним люди и другие машины. Беспилотный транспорт благодаря бортовому компьютеру с EfficientViT может определить за доли секунды, что означает: обрабатывается каждый пиксель изображения с высоким разрешением, чтобы не упускать объекты из виду.
Но эта задача, известная как семантическая сегментация, сложна и требует огромного объёма вычислений. Иные модели для этого напрямую анализируют взаимодействие между каждой парой пикселей на изображении. Поэтому их вычисления множатся в квадратной степени по мере увеличения разрешения. Так что даже точные модели слишком медленны для обработки изображений на периферийном устройстве, таком как смартфоны. Чтобы ускорить систему, исследователи MIT разработали иную модель семантической сегментации. Она обеспечивает те же возможности, что и другие, но с линейной вычислительной сложностью и аппаратно-эффективными операциями.
В результате получилась новая серия моделей компьютерного зрения высокого разрешения, которые при развёртывании на мобильном устройстве работают в девять раз быстрее, чем прочие. Важно отметить, что эта новая серия моделей продемонстрировала такую же или лучшую точность, чем альтернативы.
Необходимые для такого успеха преобразователи (трансформеры) изначально были созданы для обработки естественного языка. Они кодируют каждое слово в предложении как отличительный признак (маркер). А затем — генерируют карту внимания, которая фиксирует взаимосвязь каждого маркера с другими. Эта карта внимания помогает модели понимать текущее значение (контекст), когда та делает прогнозы.
Используя ту же концепцию для обработки изображений, преобразователь зрения разбивает видимое машиной на участки и кодирует каждый из них в маркер перед созданием карты внимания. При этом модель использует функцию подобия, которая напрямую изучает взаимодействие между каждой парой пикселей. Таким образом, модель развивает так называемое глобальное поле восприятия. То есть она может получить доступ ко всем частям изображения. Поскольку воспринимаемая сцена с высоким разрешением может содержать миллионы пикселей, разбитых на тысячи участков, карта внимания быстро становится огромной. И устройство начинает тормозить, как указано выше.
Для EfficientViT исследователи MIT использовали более простой механизм для построения карты внимания. Они заменили нелинейную функцию подобия линейной. Таким образом они могут изменять порядок операций, чтобы сократить общее количество вычислений без изменения функциональности. В их модели объём вычислений, необходимый для прогнозирования, с повышением разрешения картинки растёт линейно, по прямой, а не в квадратной степени.

Но профессор Сон Хан, первый автор научной работы, признал, что и в таком случае «бесплатного обеда не бывает». То есть линейное внимание фиксирует только общий контекст изображения, теряя частную информацию, что ухудшает точность. Чтобы компенсировать недостаток, исследователи включили в свою модель два дополнительных компонента, каждый из которых лишь ненамного повышает объём вычислений. Один из них помогает модели фиксировать взаимодействия локальных объектов. Второй модуль обеспечивает многомасштабное обучение, помогая EfficientViT распознавать как большие, так и маленькие объекты.
Из-за необходимости тщательно сбалансировать производительность и экономичность, EfficientViT разработали с аппаратно-ориентированной архитектурой, чтобы модель было проще запускать на различных типах устройств.
Основываясь на полученных результатах, исследователи хотят применить этот метод для ускорения генеративных моделей машинного обучения, которые используются для создания новых изображений. Они также хотят продолжить масштабирование EfficientViT для других визуальных задач. Например — в медицине.
Новую систему искусственного интеллекта (ИИ) представили исследователи из Массачусетского технологического института (MIT) и совместная лаборатория MIT-IBM Watson AI Lab. EfficientViT — это мощная модель компьютерного зрения, которая быстро разбивает изображении на фрагменты по значению (семантике) с высоким разрешением в реальном времени. То есть благодаря изобретению движущийся автомобиль без водителя сразу же распознаёт, где перед ним люди и другие машины. Беспилотный транспорт благодаря бортовому компьютеру с EfficientViT может определить за доли секунды, что означает: обрабатывается каждый пиксель изображения с высоким разрешением, чтобы не упускать объекты из виду.
Но эта задача, известная как семантическая сегментация, сложна и требует огромного объёма вычислений. Иные модели для этого напрямую анализируют взаимодействие между каждой парой пикселей на изображении. Поэтому их вычисления множатся в квадратной степени по мере увеличения разрешения. Так что даже точные модели слишком медленны для обработки изображений на периферийном устройстве, таком как смартфоны. Чтобы ускорить систему, исследователи MIT разработали иную модель семантической сегментации. Она обеспечивает те же возможности, что и другие, но с линейной вычислительной сложностью и аппаратно-эффективными операциями.
В результате получилась новая серия моделей компьютерного зрения высокого разрешения, которые при развёртывании на мобильном устройстве работают в девять раз быстрее, чем прочие. Важно отметить, что эта новая серия моделей продемонстрировала такую же или лучшую точность, чем альтернативы.
Необходимые для такого успеха преобразователи (трансформеры) изначально были созданы для обработки естественного языка. Они кодируют каждое слово в предложении как отличительный признак (маркер). А затем — генерируют карту внимания, которая фиксирует взаимосвязь каждого маркера с другими. Эта карта внимания помогает модели понимать текущее значение (контекст), когда та делает прогнозы.
Используя ту же концепцию для обработки изображений, преобразователь зрения разбивает видимое машиной на участки и кодирует каждый из них в маркер перед созданием карты внимания. При этом модель использует функцию подобия, которая напрямую изучает взаимодействие между каждой парой пикселей. Таким образом, модель развивает так называемое глобальное поле восприятия. То есть она может получить доступ ко всем частям изображения. Поскольку воспринимаемая сцена с высоким разрешением может содержать миллионы пикселей, разбитых на тысячи участков, карта внимания быстро становится огромной. И устройство начинает тормозить, как указано выше.
Для EfficientViT исследователи MIT использовали более простой механизм для построения карты внимания. Они заменили нелинейную функцию подобия линейной. Таким образом они могут изменять порядок операций, чтобы сократить общее количество вычислений без изменения функциональности. В их модели объём вычислений, необходимый для прогнозирования, с повышением разрешения картинки растёт линейно, по прямой, а не в квадратной степени.

Но профессор Сон Хан, первый автор научной работы, признал, что и в таком случае «бесплатного обеда не бывает». То есть линейное внимание фиксирует только общий контекст изображения, теряя частную информацию, что ухудшает точность. Чтобы компенсировать недостаток, исследователи включили в свою модель два дополнительных компонента, каждый из которых лишь ненамного повышает объём вычислений. Один из них помогает модели фиксировать взаимодействия локальных объектов. Второй модуль обеспечивает многомасштабное обучение, помогая EfficientViT распознавать как большие, так и маленькие объекты.
Из-за необходимости тщательно сбалансировать производительность и экономичность, EfficientViT разработали с аппаратно-ориентированной архитектурой, чтобы модель было проще запускать на различных типах устройств.
Основываясь на полученных результатах, исследователи хотят применить этот метод для ускорения генеративных моделей машинного обучения, которые используются для создания новых изображений. Они также хотят продолжить масштабирование EfficientViT для других визуальных задач. Например — в медицине.
- Дмитрий Ладыгин
- youtube.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Почему Китай так стремительно обгоняет США: Эксперт вскрыл секрет, который не замечал никто
Аналитик Дэн Ван уверен: если Запад не начнет срочно меняться, то он обречен перед Востоком...
Урок для всей планеты: почему ГМО-кукуруза в США породила супервредителей?
Монстры-насекомые теперь летают на сотни километров и уничтожают все подряд...
Великий обман древности: итальянские ученые доказали, что историк соврал о гибели Помпей
Случайная надпись на стене перечеркнула официальную дату смерти города...
Роковая ошибка древних врачей: Почему современные ученые считают, что Александра Македонского похоронили заживо?
Он слышал плач своих полководцев и видел приготовления к бальзамированию, но не мог пошевелиться. Тело великого царя стало его собственным гробом...
Невероятная находка в Дании: как золотые копья возрастом 2800 лет могут переписать историю Европы?
Ученые рассказали, зачем древние люди закопали драгоценное оружие у священного источника. Ответ потрясает...
Он все слышал, но не мог пошевелиться: Жуткая правда о том, почему тело Александра Македонского не разлагалось
Великий царь стал заложником собственной плоти. Диагноз, который поставили спустя 2300 лет, объясняет все: и «чудо» нетленности, и страшную смерть....
Почему Китай так стремительно обгоняет США: секрет, который не замечал никто. Часть 2
Уханьское метро, темная сторона инженерного государства и есть ли шансы у Штатов...
Карликовые люди-хоббиты не вымерли 50 000 лет назад. Они до сих пор прячутся в горах Индонезии
Профессор Форт собрал десятки свидетельств очевидцев, но большинство ученых против. Кто же прав — кабинетные скептики или полевой исследователь?...
Египет хотел создать МОРЕ в пустыне Сахара: почему проект заморозили на 60 лет?
Часть первая: Реальный шанс спастись от всемирного потопа...
Алкогольная цивилизация: древние люди освоили земледелие... ради пива
Ученые давно подозревали это, а новые находки только подлили масла в огонь «пивной» версии...
Новый российский материал спасает от пожаров и взрывов аккумуляторов
Почему эксперты называют разработку сахалинских ученых настоящим прорывом в сохранении энергии?...
Российский ученый уверен, что максимально приблизился к разгадке тайны шаровой молнии
Похоже, наука ошибалась: это не плазменный сгусток, а «живой кристалл» из частиц-призраков...