
Лантаноиды: магнитные секреты редкоземельных металлов
Лантаноиды — семейство 15 химических элементов, которые находятся в шестом периоде периодической таблицы. Они также называются редкоземельными металлами, хотя на самом деле они не такие уж и редкие. Лантаноиды обладают уникальными магнитными, спектроскопическими и люминесцентными свойствами, которые делают их востребованными в различных областях науки и техники. Недавно физики из России и Европы сделали новое открытие, связанное с магнитным поведением лантаноидов в тонкопленочных монокристаллических соединениях.
Лантаноиды — элементы с атомными номерами от 57 до 71, от лантана до лютеция. Их название происходит от греческого слова «лантанейн», что означает «скрываться». Действительно, эти элементы долго оставались незамеченными химиками из-за их сходства с другими металлами и сложности разделения. Первый лантаноид — церий — был обнаружен в 1803 году в минерале церите, а последний — лютеций — в 1907 году в минерале гадолините.
Все лантаноиды имеют неполностью заполненную 4f-подоболочку, которая определяет их химические и физические свойства. Эти подоболочки хорошо экранированы внешними электронами, поэтому лантаноиды имеют похожие степени окисления (+3) и слабо различаются по размеру. Это явление называется лантаноидным сжатием. Однако лантаноиды не одинаковы по своей магнитной природе. Некоторые из них являются ферромагнетиками (например, гольмий), другие — антиферромагнетиками (например, диспрозий), а третьи — парамагнетиками (например, лутеций).
Магнитные свойства лантаноидов зависят от количества неспаренных электронов на 4f-подоболочке и от направления их спинов. Спины электронов могут быть параллельны или антипараллельны друг другу, что приводит к различным видам магнитного упорядочения. Кроме того, спины электронов могут быть ориентированы по-разному относительно оси кристалла, что называется наклоном магнитного момента. Этот наклон может меняться в зависимости от температуры, давления, электрического или магнитного поля.
Именно этот наклон магнитного момента стал предметом исследования физиков из МФТИ и СПбГУ, совместно с коллегами из Германии, Испании и Баскского фонда науки. Они разработали новый метод определения направления магнитного момента атомов лантаноидов в тонкопленочных монокристаллических соединениях. При помощи спектра фотоэмиссии они исследовали приповерхностные индивидуальные слои кристаллов.
Фотоэмиссия — явление, при котором электроны выбиваются из атомов под действием света. Спектр фотоэмиссии — распределение энергии этих электронов. Этот спектр зависит от состояния атомов в кристалле, в том числе от их магнитных свойств. Исследователи использовали рентгеновское излучение для возбуждения электронов 4f-подоболочки лантаноидов и измеряли их спектры при разных температурах.
Основными объектами исследования были кристаллы гольмия и диспрозия — двух лантаноидов с разными типами магнитного упорядочения. Гольмий является ферромагнетиком, а диспрозий — антиферромагнетиком. У обоих элементов наблюдается наклон магнитного момента при низких температурах. Исследователи обнаружили, что при температуре 11,5 К интенсивность спектров фотоэмиссии резко меняется для некоторых энергетических уровней электронов. Это свидетельствует о том, что в этой точке происходит изменение наклона магнитного момента.
Для объяснения этого явления ученые построили две модели: одна описывала параметры кристаллического поля в объеме кристалла, а другая — в приповерхностном слое. Оказалось, что только вторая модель полностью соответствует экспериментальным данным. Это означает, что направление магнитных моментов в объеме и на поверхности кристалла отличается друг от друга.
Это исследование открывает новые перспективы для контроля над магнитными свойствами лантаноидных материалов. Такие материалы имеют широкое применение в разных отраслях. Например, лантаноиды используются как добавки к сталям, чугунам и другим сплавам для улучшения их стойкости и жаропрочности. Лантаноиды применяют для создания мощных постоянных магнитов, которые нужны для электродвигателей, генераторов, датчиков, динамиков и других устройств. Лантаноиды также используются для создания люминесцентных материалов, которые светятся под воздействием ультрафиолетового или рентгеновского излучения. Такие материалы применяются в лазерах, оптическом волокне, экранах и лампах. Кроме того, лантаноиды используют для создания катализаторов, которые ускоряют химические реакции. Такие катализаторы применяются в нефтехимии, синтезе органических соединений и очистке выхлопных газов.
Таким образом, лантаноиды — удивительные элементы, которые скрывают в себе множество магнитных секретов. Изучение их свойств позволяет создавать новые материалы и технологии, которые имеют большое значение для науки и промышленности. Открытие российских и европейских физиков — еще один шаг на пути к пониманию и контролю над магнитными явлениями в лантаноидных соединениях.
Лантаноиды — элементы с атомными номерами от 57 до 71, от лантана до лютеция. Их название происходит от греческого слова «лантанейн», что означает «скрываться». Действительно, эти элементы долго оставались незамеченными химиками из-за их сходства с другими металлами и сложности разделения. Первый лантаноид — церий — был обнаружен в 1803 году в минерале церите, а последний — лютеций — в 1907 году в минерале гадолините.
Все лантаноиды имеют неполностью заполненную 4f-подоболочку, которая определяет их химические и физические свойства. Эти подоболочки хорошо экранированы внешними электронами, поэтому лантаноиды имеют похожие степени окисления (+3) и слабо различаются по размеру. Это явление называется лантаноидным сжатием. Однако лантаноиды не одинаковы по своей магнитной природе. Некоторые из них являются ферромагнетиками (например, гольмий), другие — антиферромагнетиками (например, диспрозий), а третьи — парамагнетиками (например, лутеций).
Магнитные свойства лантаноидов зависят от количества неспаренных электронов на 4f-подоболочке и от направления их спинов. Спины электронов могут быть параллельны или антипараллельны друг другу, что приводит к различным видам магнитного упорядочения. Кроме того, спины электронов могут быть ориентированы по-разному относительно оси кристалла, что называется наклоном магнитного момента. Этот наклон может меняться в зависимости от температуры, давления, электрического или магнитного поля.
Именно этот наклон магнитного момента стал предметом исследования физиков из МФТИ и СПбГУ, совместно с коллегами из Германии, Испании и Баскского фонда науки. Они разработали новый метод определения направления магнитного момента атомов лантаноидов в тонкопленочных монокристаллических соединениях. При помощи спектра фотоэмиссии они исследовали приповерхностные индивидуальные слои кристаллов.
Фотоэмиссия — явление, при котором электроны выбиваются из атомов под действием света. Спектр фотоэмиссии — распределение энергии этих электронов. Этот спектр зависит от состояния атомов в кристалле, в том числе от их магнитных свойств. Исследователи использовали рентгеновское излучение для возбуждения электронов 4f-подоболочки лантаноидов и измеряли их спектры при разных температурах.
Основными объектами исследования были кристаллы гольмия и диспрозия — двух лантаноидов с разными типами магнитного упорядочения. Гольмий является ферромагнетиком, а диспрозий — антиферромагнетиком. У обоих элементов наблюдается наклон магнитного момента при низких температурах. Исследователи обнаружили, что при температуре 11,5 К интенсивность спектров фотоэмиссии резко меняется для некоторых энергетических уровней электронов. Это свидетельствует о том, что в этой точке происходит изменение наклона магнитного момента.
Для объяснения этого явления ученые построили две модели: одна описывала параметры кристаллического поля в объеме кристалла, а другая — в приповерхностном слое. Оказалось, что только вторая модель полностью соответствует экспериментальным данным. Это означает, что направление магнитных моментов в объеме и на поверхности кристалла отличается друг от друга.
Это исследование открывает новые перспективы для контроля над магнитными свойствами лантаноидных материалов. Такие материалы имеют широкое применение в разных отраслях. Например, лантаноиды используются как добавки к сталям, чугунам и другим сплавам для улучшения их стойкости и жаропрочности. Лантаноиды применяют для создания мощных постоянных магнитов, которые нужны для электродвигателей, генераторов, датчиков, динамиков и других устройств. Лантаноиды также используются для создания люминесцентных материалов, которые светятся под воздействием ультрафиолетового или рентгеновского излучения. Такие материалы применяются в лазерах, оптическом волокне, экранах и лампах. Кроме того, лантаноиды используют для создания катализаторов, которые ускоряют химические реакции. Такие катализаторы применяются в нефтехимии, синтезе органических соединений и очистке выхлопных газов.
Таким образом, лантаноиды — удивительные элементы, которые скрывают в себе множество магнитных секретов. Изучение их свойств позволяет создавать новые материалы и технологии, которые имеют большое значение для науки и промышленности. Открытие российских и европейских физиков — еще один шаг на пути к пониманию и контролю над магнитными явлениями в лантаноидных соединениях.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Эксперты говорят: изобретение ученых из Перми решает одну из самых серьезных и опасных проблем в современной авиации
Американцы потратили на это десятки лет и миллиарды долларов, но открытие сделали в России...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

Секретные спутники Илона Маска заподозрили в использовании запрещенных сигналов
Что это значит для России и чем могут ответить наши военные?...

Ученые обнаружили на Кавказе «ужасного» хищника, способного дробить черепа с одного укуса
Почему же 400-килограммовый монстр, побеждавший медведей и саблезубых тигров, все-таки исчез с лица планеты?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...

2700 дней понадобилось ученым, чтобы, наконец, раскрыть главную тайну гигантских скатов
Оказалось, что манты ныряют на 1250-метровую глубину вовсе не за едой и не спасаясь от хищников...