Астрономы определили самую холодную звезду, излучающую радиоволны
Астрономы из Сиднейского университета выяснили, что маленькая тусклая звезда является самой холодной из зарегистрированных, излучающих излучение в радиодиапазоне.
Ультрахолодный коричневый карлик, изученный в ходе исследования, представляет собой газовый шар, кипящий при температуре около 425 градусов по Цельсию — холоднее, чем обычный костер — без сжигания ядерного топлива.
Для примера, температура поверхности Солнца, нагревающегося за счет ядерных реакций, составляет около 5600 градусов.
Хотя это и не самая холодная звезда среди известных, это самая холодная из когда-либо проанализированных с помощью радиоастрономического анализа. Результаты исследования были опубликованы в The Astrophysical Journal Letters.
— Кови Роуз, ведущий автор исследования
Как внутренняя динамика коричневых карликов периодически порождает радиоволны, остается открытым вопросом. Хотя у астрономов есть хорошее представление о том, как более крупные звезды «главной последовательности», такие, как Солнце, генерируют магнитные поля и радиоизлучение, до сих пор до конца не известно, почему менее 10 процентов коричневых карликов производят такое излучение.
Считается, что быстрое вращение ультрахолодных карликов играет роль в создании их сильных магнитных полей. Когда магнитное поле вращается со скоростью, отличной от скорости ионизированной атмосферы карлика, оно может создавать потоки электрического тока.
В этом случае считается, что радиоволны создаются притоком электронов в область магнитного полюса звезды, что в сочетании с вращением коричневого карлика вызывает регулярно повторяющиеся радиовсплески.
Коричневые карлики, называемые так потому, что они излучают мало энергии или света, недостаточно массивны, чтобы зажечь ядерный синтез, связанный с другими звездами, такими как наше Солнце.
— Кови Роуз.
Звезда с броским названием T8 Dwarf WISE J062309.94−045624.6 находится примерно в 37 световых годах от Земли. Она была обнаружена в 2011 году астрономами Калифорнийского технологического института в США.
Радиус звезды составляет от 0,65 до 0,95 радиуса Юпитера. Его масса не очень хорошо изучена, но она как минимум в четыре раза массивнее Юпитера, но не более чем в 44 раза. Солнце в свою очередь 1000 раз массивнее Юпитера.

Изображение, показывающее относительный размер типичного коричневого карлика. В случае звезды в этом исследовании коричневый карлик меньше Юпитера (от 0,65 до 0,95 его радиуса), но более массивен, где-то в четыре-44 раза больше массы Юпитера. Предоставлено: НАСА/Лаборатория реактивного движения.
Анализ звезды был проведен профессором Роузом с использованием новых данных телескопа CSIRO ASKAP в Западной Австралии и дополнен наблюдениями с компактного массива австралийских телескопов около Наррабри в Новом Южном Уэльсе и телескопа MeerKAT в Южной Африке.
— Профессор Тара Мерфи, соавтор и руководитель Школы физики Сиднейского университета.
Ультрахолодный коричневый карлик, изученный в ходе исследования, представляет собой газовый шар, кипящий при температуре около 425 градусов по Цельсию — холоднее, чем обычный костер — без сжигания ядерного топлива.
Для примера, температура поверхности Солнца, нагревающегося за счет ядерных реакций, составляет около 5600 градусов.
Хотя это и не самая холодная звезда среди известных, это самая холодная из когда-либо проанализированных с помощью радиоастрономического анализа. Результаты исследования были опубликованы в The Astrophysical Journal Letters.
Очень редко можно найти такие ультрахолодные коричневые карлики, производящие радиоизлучение. Это потому, что их динамика обычно не создает магнитных полей, которые генерируют радиоизлучение, обнаруживаемое с Земли.
Обнаружение коричневого карлика, излучающего радиоволны при такой низкой температуре, — впечатляющее открытие. Углубление наших знаний об ультрахолодных коричневых карликах, подобных этому, поможет нам понять эволюцию звезд, в том числе то, как они генерируют магнитные поля
Обнаружение коричневого карлика, излучающего радиоволны при такой низкой температуре, — впечатляющее открытие. Углубление наших знаний об ультрахолодных коричневых карликах, подобных этому, поможет нам понять эволюцию звезд, в том числе то, как они генерируют магнитные поля
— Кови Роуз, ведущий автор исследования
Как звезда генерирует магнитное поле?
Как внутренняя динамика коричневых карликов периодически порождает радиоволны, остается открытым вопросом. Хотя у астрономов есть хорошее представление о том, как более крупные звезды «главной последовательности», такие, как Солнце, генерируют магнитные поля и радиоизлучение, до сих пор до конца не известно, почему менее 10 процентов коричневых карликов производят такое излучение.
Считается, что быстрое вращение ультрахолодных карликов играет роль в создании их сильных магнитных полей. Когда магнитное поле вращается со скоростью, отличной от скорости ионизированной атмосферы карлика, оно может создавать потоки электрического тока.
В этом случае считается, что радиоволны создаются притоком электронов в область магнитного полюса звезды, что в сочетании с вращением коричневого карлика вызывает регулярно повторяющиеся радиовсплески.
Коричневые карлики, называемые так потому, что они излучают мало энергии или света, недостаточно массивны, чтобы зажечь ядерный синтез, связанный с другими звездами, такими как наше Солнце.
Эти звезды являются своего рода недостающим звеном между самыми маленькими звездами, которые сжигают водород в ядерных реакциях, и самыми большими газовыми планетами-гигантами, такими как Юпитер
— Кови Роуз.
Звезда с броским названием T8 Dwarf WISE J062309.94−045624.6 находится примерно в 37 световых годах от Земли. Она была обнаружена в 2011 году астрономами Калифорнийского технологического института в США.
Радиус звезды составляет от 0,65 до 0,95 радиуса Юпитера. Его масса не очень хорошо изучена, но она как минимум в четыре раза массивнее Юпитера, но не более чем в 44 раза. Солнце в свою очередь 1000 раз массивнее Юпитера.
Изображение, показывающее относительный размер типичного коричневого карлика. В случае звезды в этом исследовании коричневый карлик меньше Юпитера (от 0,65 до 0,95 его радиуса), но более массивен, где-то в четыре-44 раза больше массы Юпитера. Предоставлено: НАСА/Лаборатория реактивного движения.
Анализ звезды был проведен профессором Роузом с использованием новых данных телескопа CSIRO ASKAP в Западной Австралии и дополнен наблюдениями с компактного массива австралийских телескопов около Наррабри в Новом Южном Уэльсе и телескопа MeerKAT в Южной Африке.
Мы только что начали полноценную работу с ASKAP и уже находим много интересных и необычных астрономических объектов, таких как этот.
Открыв это направление в радиоисследовании неба, мы продвинемся в нашем понимании окружающих нас звезд и приблизимся к открытию потенциально обитаемых экзопланетных систем, которые они содержат
Открыв это направление в радиоисследовании неба, мы продвинемся в нашем понимании окружающих нас звезд и приблизимся к открытию потенциально обитаемых экзопланетных систем, которые они содержат
— Профессор Тара Мерфи, соавтор и руководитель Школы физики Сиднейского университета.
- Алексей Павлов
- НАСА/Лаборатория реактивного движения.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как герой-летчик Байдуков «заселил» раками озеро Балхаш?
После генеральского банкета 1966 года легендарный полярный пилот отдал неожиданную команду, которая навсегда изменила экосистему огромного озера...
Легендарное Шимозеро снова ушло под землю: исследователи пытаются разгадать одну из самых таинственных гидроаномалий России
Столетний научный детектив: от гипотезы 1894 года до GPS-маяков. Куда пропадает вода на Русском Севере?...
Как построили Великую пирамиду: американский ученый нашел неожиданный и простой до гениальности способ
Теория оказалась настолько логичной, что смогла объяснить многие аномалии пирамиды Хеопса, над которыми столетиями ломали головы ученые...
199 лет самому глубокому колодцу в России: вечная мерзлота, 116 метров, 10 лет титанического труда
Почему это невероятная работа с самого начала была обречена на неудачу? И на какой все-таки глубине находится вода в Якутске?...
Снова плохая новость для Илона Маска: выяснилось, что атмосфера Марса сама производит яд
Готово ли человечество не просто прилететь на Красную планету, а жить в ядовитой пыли и вести бесконечную борьбу за выживание?...
Почему ЦРУ «взорвало» целый остров, а Мексика из-за этого потеряла разом 22,5 миллиарда баррелей нефти?
Поразительная история Бермехи, самого дорогого клочка суши в море...
Китайский гриб 50 лет ставит науку в тупик своими «лилипутскими галлюцинациями»
Уникальная аномалия: все, кто попробовал Lanmaoa asiatica, видят всегда маленьких человечков. Почему же так происходит?...
Импланты в голове превратили жизнь китайских пациентов в кошмар наяву
Участник эксперимента рассказал: «Когда нейрочип отключили, я упал на пол. Жить без импланта было просто невыносимо. Я умолял врача включить чип снова. И тогда...
Очень зимняя история: Как 289 лет назад появилась первая точная карта России
Почему генплан Российского получилось создать лишь… на льду замершего Финского залива? И причем здесь шпионский скандал?...
«Иноагент» XVIII века: Франция и Турция финансировали восстание Пугачева?
Эксперты говорят: это был один из первых примеров гибридной войны. Французское золото и военные советники, турецкие деньги и крымско-татарская конница,...
Эстония снова замахнулась на исторические земли России
Почему Печорский район Псковской области не дает покоя Таллину? И по каким причинам эксперты называют эстонские действия «бомбой под Европу»?...
Детектив 1613 года: Как Британия едва не захватила Русский Север
Почему ученые говорят, что главная тайна этой истории до сих пор не разгадана?...