
Сибирский водород получили из воды с помощью лазера: новый метод и его перспективы.
Водород — один из самых перспективных источников энергии для низкоуглеродной экономики. Однако его производство требует больших затрат электричества, которое часто получают из ископаемого топлива. Ученые Федерального исследовательского центра угля и углехимии Сибирского отделения РАН (ФИЦ УУХ СО РАН) нашли способ снизить энергопотребление на получение водорода вдвое. Они использовали лазерное облучение для разложения воды с добавлением алюминиевого порошка. Результаты их работы опубликованы в журнале International Journal of Hydrogen Energy.
ФИЦ УУХ СО РАН является членом консорциума Центра компетенций Национальной технологической инициативы «Водород как основа низкоуглеродной экономики» на базе Института катализа СО РАН. В рамках этого проекта специалисты центра и их партнеры проводят фундаментальные и прикладные исследования для разработки и внедрения новых методов получения и применения чистого водорода.
Самым экологичным способом получения водорода является электролиз — разложение воды на водород и кислород с помощью электрического тока. Если электричество производится из возобновляемых источников энергии, таких как солнечные батареи или ветряные генераторы, то такой водород называют «зеленым». Однако этот метод имеет существенный недостаток — высокую стоимость. Для производства одного килограмма водорода требуется около 40 кВт·ч электроэнергии. Из-за этого доля «зеленого» водорода не превышает 5% от мирового объема производства.
Химики ФИЦ УУХ СО РАН предложили альтернативный способ получения водорода, который потребляет вдвое меньше энергии. Они использовали суспензию из воды и нанопорошка алюминия, которую облучали лазером.
Лазерное излучение поглощается только частицами алюминия, а вода остается оптически прозрачной. Частицы алюминия покрыты оксидной оболочкой, которая разрушается под действием лазера. Вода контактирует с металлическим ядром и происходит химическая реакция с выделением водорода.
— один из авторов разработки, научный сотрудник ФИЦ угля и углехимии СО РАН Ярослав Крафт.
Побочным продуктом процесса является оксид алюминия, который можно использовать для производства адсорбентов и керамических материалов, а также в качестве носителя катализаторов. Это уменьшает экологическую нагрузку и повышает экономическую эффективность технологии.
Сибирские ученые планируют заменить наночастицы на отходы металлообработки в ближайшем будущем. Они также отмечают, что в их регионе работает большое количество металлообрабатывающих предприятий, поэтому трудностей с получением вторичного сырья у них не возникнет.
Однако для реализации этой идеи необходимо провести дополнительные эксперименты по определению оптимальных параметров лазерного разложения воды с использованием отходов металлообработки. В частности, нужно учитывать размер, форму и состав частиц алюминия, а также их взаимодействие с лазерным излучением и водой. Также нужно обеспечить однородность и стабильность суспензии из воды и алюминия, чтобы избежать осаждения частиц на дне реактора.
ФИЦ УУХ СО РАН является членом консорциума Центра компетенций Национальной технологической инициативы «Водород как основа низкоуглеродной экономики» на базе Института катализа СО РАН. В рамках этого проекта специалисты центра и их партнеры проводят фундаментальные и прикладные исследования для разработки и внедрения новых методов получения и применения чистого водорода.
Самым экологичным способом получения водорода является электролиз — разложение воды на водород и кислород с помощью электрического тока. Если электричество производится из возобновляемых источников энергии, таких как солнечные батареи или ветряные генераторы, то такой водород называют «зеленым». Однако этот метод имеет существенный недостаток — высокую стоимость. Для производства одного килограмма водорода требуется около 40 кВт·ч электроэнергии. Из-за этого доля «зеленого» водорода не превышает 5% от мирового объема производства.
Химики ФИЦ УУХ СО РАН предложили альтернативный способ получения водорода, который потребляет вдвое меньше энергии. Они использовали суспензию из воды и нанопорошка алюминия, которую облучали лазером.
Лазерное излучение поглощается только частицами алюминия, а вода остается оптически прозрачной. Частицы алюминия покрыты оксидной оболочкой, которая разрушается под действием лазера. Вода контактирует с металлическим ядром и происходит химическая реакция с выделением водорода.
Наш лазер исследовательского класса и характеристики его излучения даже избыточны для промышленного получения водорода данным методом. Предлагаемую технологию можно масштабировать, используя доступные коммерческие полупроводниковые лазеры. Наши расчеты показывают, что производительность модуля с использованием одного источника лазерного излучения составит 2.5–3 м3 водорода в час. Если их объединить в кластер, то можно достичь показателей промышленного электролизера, только система получится более компактной и дешевой
— один из авторов разработки, научный сотрудник ФИЦ угля и углехимии СО РАН Ярослав Крафт.
Побочным продуктом процесса является оксид алюминия, который можно использовать для производства адсорбентов и керамических материалов, а также в качестве носителя катализаторов. Это уменьшает экологическую нагрузку и повышает экономическую эффективность технологии.
Сибирские ученые планируют заменить наночастицы на отходы металлообработки в ближайшем будущем. Они также отмечают, что в их регионе работает большое количество металлообрабатывающих предприятий, поэтому трудностей с получением вторичного сырья у них не возникнет.
Однако для реализации этой идеи необходимо провести дополнительные эксперименты по определению оптимальных параметров лазерного разложения воды с использованием отходов металлообработки. В частности, нужно учитывать размер, форму и состав частиц алюминия, а также их взаимодействие с лазерным излучением и водой. Также нужно обеспечить однородность и стабильность суспензии из воды и алюминия, чтобы избежать осаждения частиц на дне реактора.
- Евгения Бусина
- atomic-energy.ru
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Вот уже 17 лет власти Египта запрещают археологам исследовать легендарный Лабиринт
Что скрывает Египет: библиотеку Атлантиды или доказательства переписывания истории?...

Воскрешение монстра: Colossal возвращает к жизни 3,6-метровую птицу-убийцу моа!
Сможет ли 230-килограммовый гигант из Новой Зеландии выжить среди людей?...

Кости Христа находятся... в США: Тамплиеры бросают вызов Ватикану с помощью ДНК-тестов
Глава ордена: «Саркофаги с останками семьи Иисуса спрятаны от Папы. Мы везли не золото — везли Бога»....

«Богатые тоже плачут»: США открыли «новую эру энергетики» — 800 часов в год без света!
Штаты хвастались ИИ, а электросети «горят» даже от чат-ботов… Россия тем временем запускает термояд....

Антарктида включила режим самоуничтожения? Лед тает, соль растет
Данные со спутников вызвали настоящую панику среди ученых....

Пока все спорят, был ли «Титаник» непотопляемым, вот что обещали за билет в 8700 $ (≈ 220 000 сегодня)
Эксперты рассказали, почему никто не верил в катастрофу....

Такого экологи не ждали: Китай очистил у себя воздух и... подогрел всю планету
Хотели, как лучше, а получилась климатическая бомба....