Сибирский водород получили из воды с помощью лазера: новый метод и его перспективы.
10 047

Сибирский водород получили из воды с помощью лазера: новый метод и его перспективы.

Водород — один из самых перспективных источников энергии для низкоуглеродной экономики. Однако его производство требует больших затрат электричества, которое часто получают из ископаемого топлива. Ученые Федерального исследовательского центра угля и углехимии Сибирского отделения РАН (ФИЦ УУХ СО РАН) нашли способ снизить энергопотребление на получение водорода вдвое. Они использовали лазерное облучение для разложения воды с добавлением алюминиевого порошка. Результаты их работы опубликованы в журнале International Journal of Hydrogen Energy.


ФИЦ УУХ СО РАН является членом консорциума Центра компетенций Национальной технологической инициативы «Водород как основа низкоуглеродной экономики» на базе Института катализа СО РАН. В рамках этого проекта специалисты центра и их партнеры проводят фундаментальные и прикладные исследования для разработки и внедрения новых методов получения и применения чистого водорода.

Самым экологичным способом получения водорода является электролиз — разложение воды на водород и кислород с помощью электрического тока. Если электричество производится из возобновляемых источников энергии, таких как солнечные батареи или ветряные генераторы, то такой водород называют «зеленым». Однако этот метод имеет существенный недостаток — высокую стоимость. Для производства одного килограмма водорода требуется около 40 кВт·ч электроэнергии. Из-за этого доля «зеленого» водорода не превышает 5% от мирового объема производства.

Химики ФИЦ УУХ СО РАН предложили альтернативный способ получения водорода, который потребляет вдвое меньше энергии. Они использовали суспензию из воды и нанопорошка алюминия, которую облучали лазером.

Лазерное излучение поглощается только частицами алюминия, а вода остается оптически прозрачной. Частицы алюминия покрыты оксидной оболочкой, которая разрушается под действием лазера. Вода контактирует с металлическим ядром и происходит химическая реакция с выделением водорода.

Наш лазер исследовательского класса и характеристики его излучения даже избыточны для промышленного получения водорода данным методом. Предлагаемую технологию можно масштабировать, используя доступные коммерческие полупроводниковые лазеры. Наши расчеты показывают, что производительность модуля с использованием одного источника лазерного излучения составит 2.5–3 м3 водорода в час. Если их объединить в кластер, то можно достичь показателей промышленного электролизера, только система получится более компактной и дешевой

— один из авторов разработки, научный сотрудник ФИЦ угля и углехимии СО РАН Ярослав Крафт.

Побочным продуктом процесса является оксид алюминия, который можно использовать для производства адсорбентов и керамических материалов, а также в качестве носителя катализаторов. Это уменьшает экологическую нагрузку и повышает экономическую эффективность технологии.

Сибирские ученые планируют заменить наночастицы на отходы металлообработки в ближайшем будущем. Они также отмечают, что в их регионе работает большое количество металлообрабатывающих предприятий, поэтому трудностей с получением вторичного сырья у них не возникнет.

Однако для реализации этой идеи необходимо провести дополнительные эксперименты по определению оптимальных параметров лазерного разложения воды с использованием отходов металлообработки. В частности, нужно учитывать размер, форму и состав частиц алюминия, а также их взаимодействие с лазерным излучением и водой. Также нужно обеспечить однородность и стабильность суспензии из воды и алюминия, чтобы избежать осаждения частиц на дне реактора.
Наши новостные каналы

Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.

Рекомендуем для вас