
Сибирский водород получили из воды с помощью лазера: новый метод и его перспективы.
Водород — один из самых перспективных источников энергии для низкоуглеродной экономики. Однако его производство требует больших затрат электричества, которое часто получают из ископаемого топлива. Ученые Федерального исследовательского центра угля и углехимии Сибирского отделения РАН (ФИЦ УУХ СО РАН) нашли способ снизить энергопотребление на получение водорода вдвое. Они использовали лазерное облучение для разложения воды с добавлением алюминиевого порошка. Результаты их работы опубликованы в журнале International Journal of Hydrogen Energy.
ФИЦ УУХ СО РАН является членом консорциума Центра компетенций Национальной технологической инициативы «Водород как основа низкоуглеродной экономики» на базе Института катализа СО РАН. В рамках этого проекта специалисты центра и их партнеры проводят фундаментальные и прикладные исследования для разработки и внедрения новых методов получения и применения чистого водорода.
Самым экологичным способом получения водорода является электролиз — разложение воды на водород и кислород с помощью электрического тока. Если электричество производится из возобновляемых источников энергии, таких как солнечные батареи или ветряные генераторы, то такой водород называют «зеленым». Однако этот метод имеет существенный недостаток — высокую стоимость. Для производства одного килограмма водорода требуется около 40 кВт·ч электроэнергии. Из-за этого доля «зеленого» водорода не превышает 5% от мирового объема производства.
Химики ФИЦ УУХ СО РАН предложили альтернативный способ получения водорода, который потребляет вдвое меньше энергии. Они использовали суспензию из воды и нанопорошка алюминия, которую облучали лазером.
Лазерное излучение поглощается только частицами алюминия, а вода остается оптически прозрачной. Частицы алюминия покрыты оксидной оболочкой, которая разрушается под действием лазера. Вода контактирует с металлическим ядром и происходит химическая реакция с выделением водорода.
— один из авторов разработки, научный сотрудник ФИЦ угля и углехимии СО РАН Ярослав Крафт.
Побочным продуктом процесса является оксид алюминия, который можно использовать для производства адсорбентов и керамических материалов, а также в качестве носителя катализаторов. Это уменьшает экологическую нагрузку и повышает экономическую эффективность технологии.
Сибирские ученые планируют заменить наночастицы на отходы металлообработки в ближайшем будущем. Они также отмечают, что в их регионе работает большое количество металлообрабатывающих предприятий, поэтому трудностей с получением вторичного сырья у них не возникнет.
Однако для реализации этой идеи необходимо провести дополнительные эксперименты по определению оптимальных параметров лазерного разложения воды с использованием отходов металлообработки. В частности, нужно учитывать размер, форму и состав частиц алюминия, а также их взаимодействие с лазерным излучением и водой. Также нужно обеспечить однородность и стабильность суспензии из воды и алюминия, чтобы избежать осаждения частиц на дне реактора.
ФИЦ УУХ СО РАН является членом консорциума Центра компетенций Национальной технологической инициативы «Водород как основа низкоуглеродной экономики» на базе Института катализа СО РАН. В рамках этого проекта специалисты центра и их партнеры проводят фундаментальные и прикладные исследования для разработки и внедрения новых методов получения и применения чистого водорода.
Самым экологичным способом получения водорода является электролиз — разложение воды на водород и кислород с помощью электрического тока. Если электричество производится из возобновляемых источников энергии, таких как солнечные батареи или ветряные генераторы, то такой водород называют «зеленым». Однако этот метод имеет существенный недостаток — высокую стоимость. Для производства одного килограмма водорода требуется около 40 кВт·ч электроэнергии. Из-за этого доля «зеленого» водорода не превышает 5% от мирового объема производства.
Химики ФИЦ УУХ СО РАН предложили альтернативный способ получения водорода, который потребляет вдвое меньше энергии. Они использовали суспензию из воды и нанопорошка алюминия, которую облучали лазером.
Лазерное излучение поглощается только частицами алюминия, а вода остается оптически прозрачной. Частицы алюминия покрыты оксидной оболочкой, которая разрушается под действием лазера. Вода контактирует с металлическим ядром и происходит химическая реакция с выделением водорода.
Наш лазер исследовательского класса и характеристики его излучения даже избыточны для промышленного получения водорода данным методом. Предлагаемую технологию можно масштабировать, используя доступные коммерческие полупроводниковые лазеры. Наши расчеты показывают, что производительность модуля с использованием одного источника лазерного излучения составит 2.5–3 м3 водорода в час. Если их объединить в кластер, то можно достичь показателей промышленного электролизера, только система получится более компактной и дешевой
— один из авторов разработки, научный сотрудник ФИЦ угля и углехимии СО РАН Ярослав Крафт.
Побочным продуктом процесса является оксид алюминия, который можно использовать для производства адсорбентов и керамических материалов, а также в качестве носителя катализаторов. Это уменьшает экологическую нагрузку и повышает экономическую эффективность технологии.
Сибирские ученые планируют заменить наночастицы на отходы металлообработки в ближайшем будущем. Они также отмечают, что в их регионе работает большое количество металлообрабатывающих предприятий, поэтому трудностей с получением вторичного сырья у них не возникнет.
Однако для реализации этой идеи необходимо провести дополнительные эксперименты по определению оптимальных параметров лазерного разложения воды с использованием отходов металлообработки. В частности, нужно учитывать размер, форму и состав частиц алюминия, а также их взаимодействие с лазерным излучением и водой. Также нужно обеспечить однородность и стабильность суспензии из воды и алюминия, чтобы избежать осаждения частиц на дне реактора.
- Евгения Бусина
- atomic-energy.ru
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...

Камни, растущие из пола в мексиканской пещере, пролили свет на загадочное крушение империи майя
Оказалось, что 13 роковых лет климатического беспредела нанесли смертельный удар величайшей цивилизации Центральной Америки...

Почему открытие «темного кислорода» на 4000-метровой глубине вызвало яростные споры между учеными и добывающими компаниями?
И как это поможет нам найти жизнь на других планетах?...