Квантовый суперлазер из Пензы может перестраивать длину волны
Как создать лазер, который не требует много энергии и может менять цвет своего свечения? Российские ученые нашли ответ на этот вопрос, используя квантовые молекулы — особые наночастицы, которые ведут себя как атомы. Они открыли новый эффект туннелирования, который позволяет контролировать интенсивность и длину волны лазерного излучения.
Квантовые точки — ограниченные в трех направлениях маленькие частички вещества, в которых электроны не могут свободно двигаться. Их размеры составляют от нескольких до десятков нанометров (миллиардных долей метра). Из-за квантовых эффектов они обладают определенными энергетическими уровнями как атомы. Квантовые точки могут излучать свет разных цветов в зависимости от своего размера и материала.
Квантовые молекулы — это две квантовые точки, находящиеся недалеко друг от друга и взаимодействующие между собой. Они образуют своеобразную «молекулу» из двух «атомов». Квантовые молекулы также могут излучать свет, но его характеристики зависят не только от размеров и материалов квантовых точек, но и от расстояния между ними.
Исследователи из Пензенского государственного университета разработали новый способ создания энергосберегающих лазеров с перестраиваемой длиной волны на основе квантовых молекул. Они изучали взаимодействие двух квантовых точек разных размеров и материалов, которые были помещены в полупроводниковую матрицу. Они обнаружили, что между ними возникает эффект туннелирования — частички одной квантовой точки преодолевают барьер и переходят в другую. Это приводит к изменению энергии и излучения квантовых молекул.
Ученым удалось научиться контролировать количество переходящих при этом процессе электронов, добавляя или убавляя напряжение на квантовые точки. Тем самым они смогли менять интенсивность света лазера. Кроме того, они смогли перестроить длину волны лазерной генерации из инфракрасного диапазона в диапазон видимого света. Для этого они использовали разные комбинации квантовых точек из кадмия, селена, цинка и серы.
Это открытие может иметь широкое применение в разных областях науки и техники, где нужны лазеры с низким энергопотреблением и возможностью перестраивать длину волны. Например, такие лазеры могут быть полезны для изготовления микросхем. Они позволяют изучать спектральные характеристики различных веществ, проводить спектроскопический анализ газов и жидкостей, измерять концентрацию и температуру загрязняющих веществ в атмосфере. Также такие лазеры используются для создания оптических телекоммуникационных систем с высокой пропускной способностью и гибкостью, для реализации методов оптической когерентной томографии и лазерной хирургии, для генерации ультракоротких импульсов света и управления их параметрами.
В работе принимали участие ученые из Пензенского государственного университета, Института физики полупроводников им. А. В. Ржанова СО РАН и Института физики микроструктур РАН. Они получили грант на проведение исследования от Российского фонда фундаментальных исследований.
Квантовые молекулы — это не единственный способ создания лазеров с перестраиваемой длиной волны. Например, в 2019 году китайские ученые представили лазер на основе кристаллов перовскита — материала с уникальными свойствами. Однако квантовые молекулы имеют свои преимущества: они более стабильны, эффективны и легко интегрируются в полупроводниковые схемы.
Квантовые точки — ограниченные в трех направлениях маленькие частички вещества, в которых электроны не могут свободно двигаться. Их размеры составляют от нескольких до десятков нанометров (миллиардных долей метра). Из-за квантовых эффектов они обладают определенными энергетическими уровнями как атомы. Квантовые точки могут излучать свет разных цветов в зависимости от своего размера и материала.
Квантовые молекулы — это две квантовые точки, находящиеся недалеко друг от друга и взаимодействующие между собой. Они образуют своеобразную «молекулу» из двух «атомов». Квантовые молекулы также могут излучать свет, но его характеристики зависят не только от размеров и материалов квантовых точек, но и от расстояния между ними.
Исследователи из Пензенского государственного университета разработали новый способ создания энергосберегающих лазеров с перестраиваемой длиной волны на основе квантовых молекул. Они изучали взаимодействие двух квантовых точек разных размеров и материалов, которые были помещены в полупроводниковую матрицу. Они обнаружили, что между ними возникает эффект туннелирования — частички одной квантовой точки преодолевают барьер и переходят в другую. Это приводит к изменению энергии и излучения квантовых молекул.
Ученым удалось научиться контролировать количество переходящих при этом процессе электронов, добавляя или убавляя напряжение на квантовые точки. Тем самым они смогли менять интенсивность света лазера. Кроме того, они смогли перестроить длину волны лазерной генерации из инфракрасного диапазона в диапазон видимого света. Для этого они использовали разные комбинации квантовых точек из кадмия, селена, цинка и серы.
Это открытие может иметь широкое применение в разных областях науки и техники, где нужны лазеры с низким энергопотреблением и возможностью перестраивать длину волны. Например, такие лазеры могут быть полезны для изготовления микросхем. Они позволяют изучать спектральные характеристики различных веществ, проводить спектроскопический анализ газов и жидкостей, измерять концентрацию и температуру загрязняющих веществ в атмосфере. Также такие лазеры используются для создания оптических телекоммуникационных систем с высокой пропускной способностью и гибкостью, для реализации методов оптической когерентной томографии и лазерной хирургии, для генерации ультракоротких импульсов света и управления их параметрами.
В работе принимали участие ученые из Пензенского государственного университета, Института физики полупроводников им. А. В. Ржанова СО РАН и Института физики микроструктур РАН. Они получили грант на проведение исследования от Российского фонда фундаментальных исследований.
Квантовые молекулы — это не единственный способ создания лазеров с перестраиваемой длиной волны. Например, в 2019 году китайские ученые представили лазер на основе кристаллов перовскита — материала с уникальными свойствами. Однако квантовые молекулы имеют свои преимущества: они более стабильны, эффективны и легко интегрируются в полупроводниковые схемы.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Ляп на ляпе — так профессиональные историки оценили «Гладиатора 2»
Режиссер пришел в бешенство, когда фильм назвали исторически неточным....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученые рассказали о жутких последствиях сна
Что происходит, когда снится собственная смерть?...
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Невероятно! Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Филигранная работа: Механический скарабей поражает точностью
Робот способен полноценно манипулировать крупногабаритом даже в тесноте....