
Квантовый суперлазер из Пензы может перестраивать длину волны
Как создать лазер, который не требует много энергии и может менять цвет своего свечения? Российские ученые нашли ответ на этот вопрос, используя квантовые молекулы — особые наночастицы, которые ведут себя как атомы. Они открыли новый эффект туннелирования, который позволяет контролировать интенсивность и длину волны лазерного излучения.
Квантовые точки — ограниченные в трех направлениях маленькие частички вещества, в которых электроны не могут свободно двигаться. Их размеры составляют от нескольких до десятков нанометров (миллиардных долей метра). Из-за квантовых эффектов они обладают определенными энергетическими уровнями как атомы. Квантовые точки могут излучать свет разных цветов в зависимости от своего размера и материала.
Квантовые молекулы — это две квантовые точки, находящиеся недалеко друг от друга и взаимодействующие между собой. Они образуют своеобразную «молекулу» из двух «атомов». Квантовые молекулы также могут излучать свет, но его характеристики зависят не только от размеров и материалов квантовых точек, но и от расстояния между ними.
Исследователи из Пензенского государственного университета разработали новый способ создания энергосберегающих лазеров с перестраиваемой длиной волны на основе квантовых молекул. Они изучали взаимодействие двух квантовых точек разных размеров и материалов, которые были помещены в полупроводниковую матрицу. Они обнаружили, что между ними возникает эффект туннелирования — частички одной квантовой точки преодолевают барьер и переходят в другую. Это приводит к изменению энергии и излучения квантовых молекул.
Ученым удалось научиться контролировать количество переходящих при этом процессе электронов, добавляя или убавляя напряжение на квантовые точки. Тем самым они смогли менять интенсивность света лазера. Кроме того, они смогли перестроить длину волны лазерной генерации из инфракрасного диапазона в диапазон видимого света. Для этого они использовали разные комбинации квантовых точек из кадмия, селена, цинка и серы.
Это открытие может иметь широкое применение в разных областях науки и техники, где нужны лазеры с низким энергопотреблением и возможностью перестраивать длину волны. Например, такие лазеры могут быть полезны для изготовления микросхем. Они позволяют изучать спектральные характеристики различных веществ, проводить спектроскопический анализ газов и жидкостей, измерять концентрацию и температуру загрязняющих веществ в атмосфере. Также такие лазеры используются для создания оптических телекоммуникационных систем с высокой пропускной способностью и гибкостью, для реализации методов оптической когерентной томографии и лазерной хирургии, для генерации ультракоротких импульсов света и управления их параметрами.
В работе принимали участие ученые из Пензенского государственного университета, Института физики полупроводников им. А. В. Ржанова СО РАН и Института физики микроструктур РАН. Они получили грант на проведение исследования от Российского фонда фундаментальных исследований.
Квантовые молекулы — это не единственный способ создания лазеров с перестраиваемой длиной волны. Например, в 2019 году китайские ученые представили лазер на основе кристаллов перовскита — материала с уникальными свойствами. Однако квантовые молекулы имеют свои преимущества: они более стабильны, эффективны и легко интегрируются в полупроводниковые схемы.
Квантовые точки — ограниченные в трех направлениях маленькие частички вещества, в которых электроны не могут свободно двигаться. Их размеры составляют от нескольких до десятков нанометров (миллиардных долей метра). Из-за квантовых эффектов они обладают определенными энергетическими уровнями как атомы. Квантовые точки могут излучать свет разных цветов в зависимости от своего размера и материала.
Квантовые молекулы — это две квантовые точки, находящиеся недалеко друг от друга и взаимодействующие между собой. Они образуют своеобразную «молекулу» из двух «атомов». Квантовые молекулы также могут излучать свет, но его характеристики зависят не только от размеров и материалов квантовых точек, но и от расстояния между ними.
Исследователи из Пензенского государственного университета разработали новый способ создания энергосберегающих лазеров с перестраиваемой длиной волны на основе квантовых молекул. Они изучали взаимодействие двух квантовых точек разных размеров и материалов, которые были помещены в полупроводниковую матрицу. Они обнаружили, что между ними возникает эффект туннелирования — частички одной квантовой точки преодолевают барьер и переходят в другую. Это приводит к изменению энергии и излучения квантовых молекул.
Ученым удалось научиться контролировать количество переходящих при этом процессе электронов, добавляя или убавляя напряжение на квантовые точки. Тем самым они смогли менять интенсивность света лазера. Кроме того, они смогли перестроить длину волны лазерной генерации из инфракрасного диапазона в диапазон видимого света. Для этого они использовали разные комбинации квантовых точек из кадмия, селена, цинка и серы.
Это открытие может иметь широкое применение в разных областях науки и техники, где нужны лазеры с низким энергопотреблением и возможностью перестраивать длину волны. Например, такие лазеры могут быть полезны для изготовления микросхем. Они позволяют изучать спектральные характеристики различных веществ, проводить спектроскопический анализ газов и жидкостей, измерять концентрацию и температуру загрязняющих веществ в атмосфере. Также такие лазеры используются для создания оптических телекоммуникационных систем с высокой пропускной способностью и гибкостью, для реализации методов оптической когерентной томографии и лазерной хирургии, для генерации ультракоротких импульсов света и управления их параметрами.
В работе принимали участие ученые из Пензенского государственного университета, Института физики полупроводников им. А. В. Ржанова СО РАН и Института физики микроструктур РАН. Они получили грант на проведение исследования от Российского фонда фундаментальных исследований.
Квантовые молекулы — это не единственный способ создания лазеров с перестраиваемой длиной волны. Например, в 2019 году китайские ученые представили лазер на основе кристаллов перовскита — материала с уникальными свойствами. Однако квантовые молекулы имеют свои преимущества: они более стабильны, эффективны и легко интегрируются в полупроводниковые схемы.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Найдена самая похожая на Землю планета. Готовимся к переезду?
TRAPPIST-1e идеальная: тепло, есть вода и атмосфера. Чем же тогда недовольны астрофизики?...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...