Особая молекула углерода может функционировать как несколько высокоскоростных переключателей одновременно
Впервые международная группа исследователей из Института физики твердого тела Токийского университета, продемонстрировала переключатель, аналогичный транзистору, сделанный из одной молекулы, называемой фуллереном.
Используя тщательно настроенный лазерный импульс, исследователи могут использовать фуллерен для предсказуемого переключения пути входящего электрона. Этот процесс переключения может быть на три-шесть порядков быстрее, чем переключатели в микросхемах, в зависимости от используемых лазерных импульсов. Фуллереновые переключатели в сети могут создать компьютер, превосходящий возможности электронных транзисторов, а также могут привести к беспрецедентному уровню разрешения в микроскопических устройствах обработки изображений.
Более 70 лет назад физики обнаружили, что молекулы испускают электроны в присутствии электрических полей, а позже и при определенных длинах волн света. Эмиссия электронов создавала узоры, которые вызывали любопытство, но не поддавались объяснению. Это изменилось благодаря новому теоретическому анализу, разветвление которого может привести не только к новым высокотехнологичным приложениям, но и улучшить нашу способность исследовать сам физический мир.
Исследователь проекта Хирофуми Янагисава и его команда предположили, как должна вести себя эмиссия электронов из возбужденных молекул фуллерена при воздействии определенных видов лазерного излучения, и при проверке своих предсказаний они обнаружили, что они верны.
— Хирофуми Янагисава.
Молекула фуллерена, лежащая в основе переключателя, родственна, возможно, немного более известной углеродной нанотрубке, хотя вместо трубки фуллерен представляет собой сферу из атомов углерода. При размещении на металлическом наконечнике — по сути, на конце булавки — фуллерены ориентируются определенным образом, поэтому они будут предсказуемо направлять электроны. Быстрые лазерные импульсы в масштабе фемтосекунд, квадриллионных долей секунды или даже аттосекунд, квинтиллионных долей секунды фокусируются на молекулах фуллерена, вызывая эмиссию электронов. Это первый случай, когда лазерный свет использовался для управления испусканием электронов из молекулы таким образом.
— Хирофуми Янагисава.
В принципе, поскольку несколько сверхбыстрых электронных переключателей могут быть объединены в одну молекулу, потребуется лишь небольшая сеть фуллереновых переключателей для выполнения вычислительных задач потенциально намного быстрее, чем обычные микрочипы. Но есть несколько препятствий, которые необходимо преодолеть, например, как миниатюризировать лазерный компонент, который был бы необходим для создания этого нового типа интегральной схемы. Таким образом, может пройти еще много лет, прежде чем мы увидим смартфон на основе фуллеренового коммутатора.
Используя тщательно настроенный лазерный импульс, исследователи могут использовать фуллерен для предсказуемого переключения пути входящего электрона. Этот процесс переключения может быть на три-шесть порядков быстрее, чем переключатели в микросхемах, в зависимости от используемых лазерных импульсов. Фуллереновые переключатели в сети могут создать компьютер, превосходящий возможности электронных транзисторов, а также могут привести к беспрецедентному уровню разрешения в микроскопических устройствах обработки изображений.
Более 70 лет назад физики обнаружили, что молекулы испускают электроны в присутствии электрических полей, а позже и при определенных длинах волн света. Эмиссия электронов создавала узоры, которые вызывали любопытство, но не поддавались объяснению. Это изменилось благодаря новому теоретическому анализу, разветвление которого может привести не только к новым высокотехнологичным приложениям, но и улучшить нашу способность исследовать сам физический мир.
Исследователь проекта Хирофуми Янагисава и его команда предположили, как должна вести себя эмиссия электронов из возбужденных молекул фуллерена при воздействии определенных видов лазерного излучения, и при проверке своих предсказаний они обнаружили, что они верны.
То, что нам удалось здесь сделать, — это контролировать то, как молекула направляет путь входящего электрона, используя очень короткий импульс красного лазерного света. В зависимости от импульса света электрон может либо оставаться на своем пути по умолчанию, либо быть перенаправлен предсказуемым образом. Так что это немного похоже на точки переключения на железнодорожном пути или электронный транзистор, только намного быстрее.
Мы думаем, что можем достичь скорости переключения в 1 миллион раз быстрее, чем у классического транзистора. И это может привести к реальной вычислительной производительности. Но не менее важно то, что если мы сможем настроить лазер так, чтобы заставить молекулу фуллерена переключаться несколькими способами. В то же время это может быть похоже на наличие нескольких микроскопических транзисторов в одной молекуле. Это может увеличить сложность системы без увеличения ее физического размера
Мы думаем, что можем достичь скорости переключения в 1 миллион раз быстрее, чем у классического транзистора. И это может привести к реальной вычислительной производительности. Но не менее важно то, что если мы сможем настроить лазер так, чтобы заставить молекулу фуллерена переключаться несколькими способами. В то же время это может быть похоже на наличие нескольких микроскопических транзисторов в одной молекуле. Это может увеличить сложность системы без увеличения ее физического размера
— Хирофуми Янагисава.
Молекула фуллерена, лежащая в основе переключателя, родственна, возможно, немного более известной углеродной нанотрубке, хотя вместо трубки фуллерен представляет собой сферу из атомов углерода. При размещении на металлическом наконечнике — по сути, на конце булавки — фуллерены ориентируются определенным образом, поэтому они будут предсказуемо направлять электроны. Быстрые лазерные импульсы в масштабе фемтосекунд, квадриллионных долей секунды или даже аттосекунд, квинтиллионных долей секунды фокусируются на молекулах фуллерена, вызывая эмиссию электронов. Это первый случай, когда лазерный свет использовался для управления испусканием электронов из молекулы таким образом.
Этот метод похож на то, как фотоэлектронный эмиссионный микроскоп создает изображения. Однако они могут достигать разрешения в лучшем случае около 10 нанометров, или десятимиллиардных долей метра. Наш фуллереновый переключатель улучшает это и позволяет получить разрешение около 300 пикометров, или триста триллионных долей метра
— Хирофуми Янагисава.
В принципе, поскольку несколько сверхбыстрых электронных переключателей могут быть объединены в одну молекулу, потребуется лишь небольшая сеть фуллереновых переключателей для выполнения вычислительных задач потенциально намного быстрее, чем обычные микрочипы. Но есть несколько препятствий, которые необходимо преодолеть, например, как миниатюризировать лазерный компонент, который был бы необходим для создания этого нового типа интегральной схемы. Таким образом, может пройти еще много лет, прежде чем мы увидим смартфон на основе фуллеренового коммутатора.
- Евгения Бусина
- Хирофуми Янагисава
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
«Запрещенные» опыты на орбите помогли «взломать» сразу несколько законов природы
Американские биохакеры признались, зачем на МКС выращивают крошечные человеческие мозги....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....