
Особая молекула углерода может функционировать как несколько высокоскоростных переключателей одновременно
Впервые международная группа исследователей из Института физики твердого тела Токийского университета, продемонстрировала переключатель, аналогичный транзистору, сделанный из одной молекулы, называемой фуллереном.
Используя тщательно настроенный лазерный импульс, исследователи могут использовать фуллерен для предсказуемого переключения пути входящего электрона. Этот процесс переключения может быть на три-шесть порядков быстрее, чем переключатели в микросхемах, в зависимости от используемых лазерных импульсов. Фуллереновые переключатели в сети могут создать компьютер, превосходящий возможности электронных транзисторов, а также могут привести к беспрецедентному уровню разрешения в микроскопических устройствах обработки изображений.
Более 70 лет назад физики обнаружили, что молекулы испускают электроны в присутствии электрических полей, а позже и при определенных длинах волн света. Эмиссия электронов создавала узоры, которые вызывали любопытство, но не поддавались объяснению. Это изменилось благодаря новому теоретическому анализу, разветвление которого может привести не только к новым высокотехнологичным приложениям, но и улучшить нашу способность исследовать сам физический мир.
Исследователь проекта Хирофуми Янагисава и его команда предположили, как должна вести себя эмиссия электронов из возбужденных молекул фуллерена при воздействии определенных видов лазерного излучения, и при проверке своих предсказаний они обнаружили, что они верны.
— Хирофуми Янагисава.

Молекула фуллерена, лежащая в основе переключателя, родственна, возможно, немного более известной углеродной нанотрубке, хотя вместо трубки фуллерен представляет собой сферу из атомов углерода. При размещении на металлическом наконечнике — по сути, на конце булавки — фуллерены ориентируются определенным образом, поэтому они будут предсказуемо направлять электроны. Быстрые лазерные импульсы в масштабе фемтосекунд, квадриллионных долей секунды или даже аттосекунд, квинтиллионных долей секунды фокусируются на молекулах фуллерена, вызывая эмиссию электронов. Это первый случай, когда лазерный свет использовался для управления испусканием электронов из молекулы таким образом.
— Хирофуми Янагисава.
В принципе, поскольку несколько сверхбыстрых электронных переключателей могут быть объединены в одну молекулу, потребуется лишь небольшая сеть фуллереновых переключателей для выполнения вычислительных задач потенциально намного быстрее, чем обычные микрочипы. Но есть несколько препятствий, которые необходимо преодолеть, например, как миниатюризировать лазерный компонент, который был бы необходим для создания этого нового типа интегральной схемы. Таким образом, может пройти еще много лет, прежде чем мы увидим смартфон на основе фуллеренового коммутатора.
Используя тщательно настроенный лазерный импульс, исследователи могут использовать фуллерен для предсказуемого переключения пути входящего электрона. Этот процесс переключения может быть на три-шесть порядков быстрее, чем переключатели в микросхемах, в зависимости от используемых лазерных импульсов. Фуллереновые переключатели в сети могут создать компьютер, превосходящий возможности электронных транзисторов, а также могут привести к беспрецедентному уровню разрешения в микроскопических устройствах обработки изображений.
Более 70 лет назад физики обнаружили, что молекулы испускают электроны в присутствии электрических полей, а позже и при определенных длинах волн света. Эмиссия электронов создавала узоры, которые вызывали любопытство, но не поддавались объяснению. Это изменилось благодаря новому теоретическому анализу, разветвление которого может привести не только к новым высокотехнологичным приложениям, но и улучшить нашу способность исследовать сам физический мир.
Исследователь проекта Хирофуми Янагисава и его команда предположили, как должна вести себя эмиссия электронов из возбужденных молекул фуллерена при воздействии определенных видов лазерного излучения, и при проверке своих предсказаний они обнаружили, что они верны.
То, что нам удалось здесь сделать, — это контролировать то, как молекула направляет путь входящего электрона, используя очень короткий импульс красного лазерного света. В зависимости от импульса света электрон может либо оставаться на своем пути по умолчанию, либо быть перенаправлен предсказуемым образом. Так что это немного похоже на точки переключения на железнодорожном пути или электронный транзистор, только намного быстрее.
Мы думаем, что можем достичь скорости переключения в 1 миллион раз быстрее, чем у классического транзистора. И это может привести к реальной вычислительной производительности. Но не менее важно то, что если мы сможем настроить лазер так, чтобы заставить молекулу фуллерена переключаться несколькими способами. В то же время это может быть похоже на наличие нескольких микроскопических транзисторов в одной молекуле. Это может увеличить сложность системы без увеличения ее физического размера
Мы думаем, что можем достичь скорости переключения в 1 миллион раз быстрее, чем у классического транзистора. И это может привести к реальной вычислительной производительности. Но не менее важно то, что если мы сможем настроить лазер так, чтобы заставить молекулу фуллерена переключаться несколькими способами. В то же время это может быть похоже на наличие нескольких микроскопических транзисторов в одной молекуле. Это может увеличить сложность системы без увеличения ее физического размера
— Хирофуми Янагисава.

Молекула фуллерена, лежащая в основе переключателя, родственна, возможно, немного более известной углеродной нанотрубке, хотя вместо трубки фуллерен представляет собой сферу из атомов углерода. При размещении на металлическом наконечнике — по сути, на конце булавки — фуллерены ориентируются определенным образом, поэтому они будут предсказуемо направлять электроны. Быстрые лазерные импульсы в масштабе фемтосекунд, квадриллионных долей секунды или даже аттосекунд, квинтиллионных долей секунды фокусируются на молекулах фуллерена, вызывая эмиссию электронов. Это первый случай, когда лазерный свет использовался для управления испусканием электронов из молекулы таким образом.
Этот метод похож на то, как фотоэлектронный эмиссионный микроскоп создает изображения. Однако они могут достигать разрешения в лучшем случае около 10 нанометров, или десятимиллиардных долей метра. Наш фуллереновый переключатель улучшает это и позволяет получить разрешение около 300 пикометров, или триста триллионных долей метра
— Хирофуми Янагисава.
В принципе, поскольку несколько сверхбыстрых электронных переключателей могут быть объединены в одну молекулу, потребуется лишь небольшая сеть фуллереновых переключателей для выполнения вычислительных задач потенциально намного быстрее, чем обычные микрочипы. Но есть несколько препятствий, которые необходимо преодолеть, например, как миниатюризировать лазерный компонент, который был бы необходим для создания этого нового типа интегральной схемы. Таким образом, может пройти еще много лет, прежде чем мы увидим смартфон на основе фуллеренового коммутатора.
- Евгения Бусина
- Хирофуми Янагисава
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

Генетики вычислили, какую страшную цену заплатили наши предки за высокий интеллект
Новое исследование еще раз доказало, что эволюция требует огромных жертв...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Астрофизики Гавайского университета неожиданно разгадали тайну… солнечного дождя
Рассказываем, почему новое открытие важно для каждого жителя Земли...

Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...