
Увидеть невидимое: успешно испытана терагерцовая камера на квантовых точках
Исследователи из Массачусета, Миннесотского университета и Samsung разработали новый тип камеры, которая может быстро обнаруживать терагерцовые импульсы с высокой чувствительностью при комнатной температуре и давлении. Камера обеспечивает большую чувствительность и скорость и может использоваться для промышленного контроля, безопасности и связи.
Более того, она способна одновременно получать информацию об ориентации или «поляризации» волн в режиме реального времени, чего не могут сделать существующие устройства. Эту информацию можно использовать для изучения материалов с асимметричными молекулами или для определения топографии их поверхности.
Однако разработка устройств для обнаружения и создания изображений с использованием терагерцовых волн была, до недавних пор, сложной задачей. Большинство существующих терагерцовых устройств дороги, медленны, громоздки и требуют вакуумных систем и чрезвычайно низких температур.
Новая система использует частицы, называемые квантовыми точками. Недавно было обнаружено, что они обладают способностью излучать видимый свет при стимуляции терагерцовыми волнами. Затем видимый свет может быть зарегистрирован устройством, которое похоже на детектор стандартной электронной камеры, и его можно даже увидеть невооруженным глазом.
Типовые детекторы для таких длин волн работают при температурах жидкого гелия (-269 градусов по Цельсию), что необходимо для выделения крайне низкой энергии терагерцовых фотонов из фонового шума. Тот факт, что новое устройство может создавать изображения на этих длинах волн при комнатной температуре, оказался весьма неожиданным для тех, кто в теме.
Команда создала два разных устройства: одно использует способность квантовой точки преобразовывать терагерцовые импульсы в видимый свет, что позволяет устройству создавать изображения материалов; другой создает изображения, показывающие состояние поляризации терагерцовых волн.
Матрица камеры состоит из нескольких слоев, изготовленных с использованием стандартных производственных технологий, подобных тем, которые используются для микрочипов. На подложке лежит массив наноразмерных параллельных линий золота, разделенных узкими щелями; над ним находится слой светоизлучающего материала с квантовыми точками; а над ним — микросхема CMOS, используемая для формирования изображения.
— профессор Массачусетского технологического института Кит Нельсон.
В то же время потенциал коммерциализации побудил компанию Samsung, производящую микросхемы для камер CMOS и устройства с квантовыми точками, принять участие в этом исследовании. Новые источники, основанные на микроэлектронных методах, уже в стадии разработки.
Нельсон оптимистично заявляет, что квантовые источники уже доступны, и в настоящее время даже используются в потребительских товарах, таких как телевизионные экраны. По его словам, начать серийный выпуск новой камеры несколько сложнее. Впрочем, все технологические процессы для производства квантовой камеры уже существуют в микроэлектронной промышленности, изобретать ничего не потребуется.
Фактически, в отличие от существующих терагерцовых детекторов, весь чип терагерцовой камеры может быть изготовлен с использованием современных стандартных систем производства микрочипов, а это означает, что в конечном итоге массовое производство устройств должно быть относительно недорогим.
Исследователи Массачусетского технологического института уже используют новое лабораторное устройство, когда им нужен быстрый способ обнаружения терагерцового излучения. Команда работает над улучшением чувствительности следующего поколения квантовой камеры. Это позволит использовать изобретение для изучения ряда астрофизических процессов.
Что такое терагерцевое излучение
Терагерцовое излучение, также известное как субмиллиметровое излучение, имеет длину волны, которая находится между длинами волн микроволн и видимого света.
Оно может проникать во многие неметаллические материалы и обнаруживать сигнатуры определенных молекул.
На практике эти свойства можно применять при промышленном контроле качества, сканировании в системах безопасности в аэропортах, неразрушающее изучение материалов, астрофизические наблюдения и беспроводную связь с более высокой пропускной способностью, чем современные диапазоны мобильных телефонов.
Более того, она способна одновременно получать информацию об ориентации или «поляризации» волн в режиме реального времени, чего не могут сделать существующие устройства. Эту информацию можно использовать для изучения материалов с асимметричными молекулами или для определения топографии их поверхности.
Однако разработка устройств для обнаружения и создания изображений с использованием терагерцовых волн была, до недавних пор, сложной задачей. Большинство существующих терагерцовых устройств дороги, медленны, громоздки и требуют вакуумных систем и чрезвычайно низких температур.
Новая система использует частицы, называемые квантовыми точками. Недавно было обнаружено, что они обладают способностью излучать видимый свет при стимуляции терагерцовыми волнами. Затем видимый свет может быть зарегистрирован устройством, которое похоже на детектор стандартной электронной камеры, и его можно даже увидеть невооруженным глазом.
Типовые детекторы для таких длин волн работают при температурах жидкого гелия (-269 градусов по Цельсию), что необходимо для выделения крайне низкой энергии терагерцовых фотонов из фонового шума. Тот факт, что новое устройство может создавать изображения на этих длинах волн при комнатной температуре, оказался весьма неожиданным для тех, кто в теме.
Команда создала два разных устройства: одно использует способность квантовой точки преобразовывать терагерцовые импульсы в видимый свет, что позволяет устройству создавать изображения материалов; другой создает изображения, показывающие состояние поляризации терагерцовых волн.
Матрица камеры состоит из нескольких слоев, изготовленных с использованием стандартных производственных технологий, подобных тем, которые используются для микрочипов. На подложке лежит массив наноразмерных параллельных линий золота, разделенных узкими щелями; над ним находится слой светоизлучающего материала с квантовыми точками; а над ним — микросхема CMOS, используемая для формирования изображения.
Детектор поляризации использует аналогичную структуру, но с наноразмерными кольцеобразными щелями, что позволяет ему обнаруживать поляризацию входящих лучей.
Терагерцовый источник представляет собой большой и громоздкий набор лазеров и оптических устройств, которые весьма нелегко масштабировать для массового применения
Терагерцовый источник представляет собой большой и громоздкий набор лазеров и оптических устройств, которые весьма нелегко масштабировать для массового применения
— профессор Массачусетского технологического института Кит Нельсон.
В то же время потенциал коммерциализации побудил компанию Samsung, производящую микросхемы для камер CMOS и устройства с квантовыми точками, принять участие в этом исследовании. Новые источники, основанные на микроэлектронных методах, уже в стадии разработки.
Нельсон оптимистично заявляет, что квантовые источники уже доступны, и в настоящее время даже используются в потребительских товарах, таких как телевизионные экраны. По его словам, начать серийный выпуск новой камеры несколько сложнее. Впрочем, все технологические процессы для производства квантовой камеры уже существуют в микроэлектронной промышленности, изобретать ничего не потребуется.
Фактически, в отличие от существующих терагерцовых детекторов, весь чип терагерцовой камеры может быть изготовлен с использованием современных стандартных систем производства микрочипов, а это означает, что в конечном итоге массовое производство устройств должно быть относительно недорогим.
Исследователи Массачусетского технологического института уже используют новое лабораторное устройство, когда им нужен быстрый способ обнаружения терагерцового излучения. Команда работает над улучшением чувствительности следующего поколения квантовой камеры. Это позволит использовать изобретение для изучения ряда астрофизических процессов.
Что такое терагерцевое излучение
Терагерцовое излучение, также известное как субмиллиметровое излучение, имеет длину волны, которая находится между длинами волн микроволн и видимого света.
Оно может проникать во многие неметаллические материалы и обнаруживать сигнатуры определенных молекул.
На практике эти свойства можно применять при промышленном контроле качества, сканировании в системах безопасности в аэропортах, неразрушающее изучение материалов, астрофизические наблюдения и беспроводную связь с более высокой пропускной способностью, чем современные диапазоны мобильных телефонов.
- https://www.nature.com/
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые рассказали и показали, как выглядит Антарктида без льда
Высокие горы, глубочайшие каньоны, 58 метров до Апокалипсиса и множество других тайн....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....

Ученый рассказал, как использовались загадочные артефакты из гробницы Тутанхамона
Это было как в фильме «Мумия»: «Фараон должен воскреснуть!»...