
Новое ПО устраняет проблему с «шевелёнкой» на фото на микроуровне
Для получения чётких изображений микроскопических объектов необходимо сделать несколько последовательных снимков, а затем с помощью вычислительных алгоритмов восстановить из них одно изображение с высоким разрешением. Результат получается достаточно качественным, если объект съёмки неподвижен. Но если он в динамике, как это часто бывает, например, с микробами, то итоговое изображение всё равно получается размытым или искажённым.
Исследователи из Калифорнийского университета в Беркли нашли способ улучшить разрешение при съёмке подвижных объектов микроскопической величины. В статье об исследовании, опубликованной в издании Nature Methods, они рассказали о новом инструменте вычислительной визуализации под названием neural space-time model (NSTM), что можно перевести как «нейронная модель пространства-времени». Новинка использует небольшую в плане программного кода нейронную сеть для уменьшения так называемых артефактов движения («шевелёнки») и расчёта траекторий движения.
— Руйминг Цао, ведущий автор достижения.
По словам исследователей, NSTM можно совместить с другими методами обработки изображений без необходимости в дополнительном дорогостоящем оборудовании. Что касается эффективности, то новое ПО обеспечивает улучшение по времени на порядок, сказал Цао. Инструмент с открытым исходным кодом позволяет воссоздать один чёткий снимок быстрее на базе немногих кадров. Например, для компьютерной реконструкции хватит 10 или 20 изображений для воссоздания одного со сверхвысоким разрешением.
Участница исследования Лаура Уоллер объяснила, что по сути они с коллегами использовали нейронную сеть для моделирования динамики во времени, чтобы затем реконструировать изображение соответственно быстрее. Получился очень мощный инструмент, потому что им можно ускорить обработку в 10 и более раз, в зависимости от того, сколько изображений использовали изначально как базовые.
NSTM использует машинное обучение, но не требует предварительной подготовки. Это упрощает настройку и предотвращает возможное искажение данных при обучении. Единственные данные, которые использует компьютерная модель, — это фактические кадры, которые она зафиксировала.
В ходе тестирования NSTM показала хорошие результаты для трёх различных технологий микроскопии и фотографии: дифференциально-фазово-контрастной микроскопии, 3D-микроскопии со структурированным освещением и для съёмки диффузорной камерой с подвижным затвором.
Но, как говорится, это только верхушка айсберга. NSTM можно будет использовать для улучшения любого метода компьютерной визуализации по нескольким кадрам, отметила Уоллер. Такая перспектива обещает расширить спектр научных применений, особенно в биологических науках.
Разработанную модель можно подключить к любой вычислительной задаче с динамическими (подвижными) объектами съёмки. Например, использовать при проведении компьютерной томографии, МРТ и других методах наблюдения и диагностики со сверхвысоким разрешением. Результаты использования сканирующего микроскопа также можно улучить благодаря NSTM.
Исследователи предполагают, что когда-нибудь NSTM интегрируют в уже доступные на рынке системы визуализации по принципу простого обновления программного обеспечения.
Тем временем разработчики продолжают совершенствовать инструмент, пытаясь расширить его возможности.
Исследователи из Калифорнийского университета в Беркли нашли способ улучшить разрешение при съёмке подвижных объектов микроскопической величины. В статье об исследовании, опубликованной в издании Nature Methods, они рассказали о новом инструменте вычислительной визуализации под названием neural space-time model (NSTM), что можно перевести как «нейронная модель пространства-времени». Новинка использует небольшую в плане программного кода нейронную сеть для уменьшения так называемых артефактов движения («шевелёнки») и расчёта траекторий движения.
Проблема с визуализацией движущихся целей в том, что алгоритм реконструкции предполагает статичную картинку. NSTM расширяет эти вычислительные методы для динамических образов, моделируя и реконструируя движение объектов в каждый момент времени съёмки. Это уменьшает искажения, вызванные динамикой, позволяя к тому же видеть сверхбыстрые изменения, происходящие с предметом съёмки
— Руйминг Цао, ведущий автор достижения.
По словам исследователей, NSTM можно совместить с другими методами обработки изображений без необходимости в дополнительном дорогостоящем оборудовании. Что касается эффективности, то новое ПО обеспечивает улучшение по времени на порядок, сказал Цао. Инструмент с открытым исходным кодом позволяет воссоздать один чёткий снимок быстрее на базе немногих кадров. Например, для компьютерной реконструкции хватит 10 или 20 изображений для воссоздания одного со сверхвысоким разрешением.
Участница исследования Лаура Уоллер объяснила, что по сути они с коллегами использовали нейронную сеть для моделирования динамики во времени, чтобы затем реконструировать изображение соответственно быстрее. Получился очень мощный инструмент, потому что им можно ускорить обработку в 10 и более раз, в зависимости от того, сколько изображений использовали изначально как базовые.
NSTM использует машинное обучение, но не требует предварительной подготовки. Это упрощает настройку и предотвращает возможное искажение данных при обучении. Единственные данные, которые использует компьютерная модель, — это фактические кадры, которые она зафиксировала.
В ходе тестирования NSTM показала хорошие результаты для трёх различных технологий микроскопии и фотографии: дифференциально-фазово-контрастной микроскопии, 3D-микроскопии со структурированным освещением и для съёмки диффузорной камерой с подвижным затвором.
Но, как говорится, это только верхушка айсберга. NSTM можно будет использовать для улучшения любого метода компьютерной визуализации по нескольким кадрам, отметила Уоллер. Такая перспектива обещает расширить спектр научных применений, особенно в биологических науках.
Разработанную модель можно подключить к любой вычислительной задаче с динамическими (подвижными) объектами съёмки. Например, использовать при проведении компьютерной томографии, МРТ и других методах наблюдения и диагностики со сверхвысоким разрешением. Результаты использования сканирующего микроскопа также можно улучить благодаря NSTM.
Исследователи предполагают, что когда-нибудь NSTM интегрируют в уже доступные на рынке системы визуализации по принципу простого обновления программного обеспечения.
Тем временем разработчики продолжают совершенствовать инструмент, пытаясь расширить его возможности.
- Дмитрий Ладыгин
- youtu.be/EVgLBFVUCow
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....