Новое ПО устраняет проблему с «шевелёнкой» на фото на микроуровне
Для получения чётких изображений микроскопических объектов необходимо сделать несколько последовательных снимков, а затем с помощью вычислительных алгоритмов восстановить из них одно изображение с высоким разрешением. Результат получается достаточно качественным, если объект съёмки неподвижен. Но если он в динамике, как это часто бывает, например, с микробами, то итоговое изображение всё равно получается размытым или искажённым.
Исследователи из Калифорнийского университета в Беркли нашли способ улучшить разрешение при съёмке подвижных объектов микроскопической величины. В статье об исследовании, опубликованной в издании Nature Methods, они рассказали о новом инструменте вычислительной визуализации под названием neural space-time model (NSTM), что можно перевести как «нейронная модель пространства-времени». Новинка использует небольшую в плане программного кода нейронную сеть для уменьшения так называемых артефактов движения («шевелёнки») и расчёта траекторий движения.
— Руйминг Цао, ведущий автор достижения.
По словам исследователей, NSTM можно совместить с другими методами обработки изображений без необходимости в дополнительном дорогостоящем оборудовании. Что касается эффективности, то новое ПО обеспечивает улучшение по времени на порядок, сказал Цао. Инструмент с открытым исходным кодом позволяет воссоздать один чёткий снимок быстрее на базе немногих кадров. Например, для компьютерной реконструкции хватит 10 или 20 изображений для воссоздания одного со сверхвысоким разрешением.
Участница исследования Лаура Уоллер объяснила, что по сути они с коллегами использовали нейронную сеть для моделирования динамики во времени, чтобы затем реконструировать изображение соответственно быстрее. Получился очень мощный инструмент, потому что им можно ускорить обработку в 10 и более раз, в зависимости от того, сколько изображений использовали изначально как базовые.
NSTM использует машинное обучение, но не требует предварительной подготовки. Это упрощает настройку и предотвращает возможное искажение данных при обучении. Единственные данные, которые использует компьютерная модель, — это фактические кадры, которые она зафиксировала.
В ходе тестирования NSTM показала хорошие результаты для трёх различных технологий микроскопии и фотографии: дифференциально-фазово-контрастной микроскопии, 3D-микроскопии со структурированным освещением и для съёмки диффузорной камерой с подвижным затвором.
Но, как говорится, это только верхушка айсберга. NSTM можно будет использовать для улучшения любого метода компьютерной визуализации по нескольким кадрам, отметила Уоллер. Такая перспектива обещает расширить спектр научных применений, особенно в биологических науках.
Разработанную модель можно подключить к любой вычислительной задаче с динамическими (подвижными) объектами съёмки. Например, использовать при проведении компьютерной томографии, МРТ и других методах наблюдения и диагностики со сверхвысоким разрешением. Результаты использования сканирующего микроскопа также можно улучить благодаря NSTM.
Исследователи предполагают, что когда-нибудь NSTM интегрируют в уже доступные на рынке системы визуализации по принципу простого обновления программного обеспечения.
Тем временем разработчики продолжают совершенствовать инструмент, пытаясь расширить его возможности.
Исследователи из Калифорнийского университета в Беркли нашли способ улучшить разрешение при съёмке подвижных объектов микроскопической величины. В статье об исследовании, опубликованной в издании Nature Methods, они рассказали о новом инструменте вычислительной визуализации под названием neural space-time model (NSTM), что можно перевести как «нейронная модель пространства-времени». Новинка использует небольшую в плане программного кода нейронную сеть для уменьшения так называемых артефактов движения («шевелёнки») и расчёта траекторий движения.
Проблема с визуализацией движущихся целей в том, что алгоритм реконструкции предполагает статичную картинку. NSTM расширяет эти вычислительные методы для динамических образов, моделируя и реконструируя движение объектов в каждый момент времени съёмки. Это уменьшает искажения, вызванные динамикой, позволяя к тому же видеть сверхбыстрые изменения, происходящие с предметом съёмки
— Руйминг Цао, ведущий автор достижения.
По словам исследователей, NSTM можно совместить с другими методами обработки изображений без необходимости в дополнительном дорогостоящем оборудовании. Что касается эффективности, то новое ПО обеспечивает улучшение по времени на порядок, сказал Цао. Инструмент с открытым исходным кодом позволяет воссоздать один чёткий снимок быстрее на базе немногих кадров. Например, для компьютерной реконструкции хватит 10 или 20 изображений для воссоздания одного со сверхвысоким разрешением.
Участница исследования Лаура Уоллер объяснила, что по сути они с коллегами использовали нейронную сеть для моделирования динамики во времени, чтобы затем реконструировать изображение соответственно быстрее. Получился очень мощный инструмент, потому что им можно ускорить обработку в 10 и более раз, в зависимости от того, сколько изображений использовали изначально как базовые.
NSTM использует машинное обучение, но не требует предварительной подготовки. Это упрощает настройку и предотвращает возможное искажение данных при обучении. Единственные данные, которые использует компьютерная модель, — это фактические кадры, которые она зафиксировала.
В ходе тестирования NSTM показала хорошие результаты для трёх различных технологий микроскопии и фотографии: дифференциально-фазово-контрастной микроскопии, 3D-микроскопии со структурированным освещением и для съёмки диффузорной камерой с подвижным затвором.
Но, как говорится, это только верхушка айсберга. NSTM можно будет использовать для улучшения любого метода компьютерной визуализации по нескольким кадрам, отметила Уоллер. Такая перспектива обещает расширить спектр научных применений, особенно в биологических науках.
Разработанную модель можно подключить к любой вычислительной задаче с динамическими (подвижными) объектами съёмки. Например, использовать при проведении компьютерной томографии, МРТ и других методах наблюдения и диагностики со сверхвысоким разрешением. Результаты использования сканирующего микроскопа также можно улучить благодаря NSTM.
Исследователи предполагают, что когда-нибудь NSTM интегрируют в уже доступные на рынке системы визуализации по принципу простого обновления программного обеспечения.
Тем временем разработчики продолжают совершенствовать инструмент, пытаясь расширить его возможности.
- Дмитрий Ладыгин
- youtu.be/EVgLBFVUCow
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Операция «Байконур»: как СССР дерзко и красиво долгие годы водил за нос весь Запад
С какого космодрома на самом деле стартовал Юрий Гагарин?...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
11 лет обмана и позора: Эксперты констатируют, что программа «Чистый Эверест» с треском провалилась
Кто и почему превращает высочайшую гору на планете в гигантскую свалку?...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
Главная тайна Аркаима: что спасло самый древний город на территории России от полного уничтожения?
Почему эксперты считают, что в этом месте «текут» две параллельные реальности?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...
Наука в корне ошибалась: на Титане нет огромного океана, вместо этого он пронизан «слякотными туннелями»
Почему ученые уверены, что новое открытие только увеличивает шансы на нахождение жизни на крупнейшем спутнике Сатурна?...
Чужое сердце, чужая жизнь: эти истории заставляют сомневаться в науке
Новое исследование говорит: 90% людей, получивших чужие органы, признаются, что они странно изменились после операции...