Лишь сегодня стало известно как именно ковка улучшает металл
Ещё в бронзовом и железном веках кузнецы выяснили, что качество гнутого и кованого металла повышалось. Процесс этот, известный как деформационное упрочнение, широко используется в металлургии и производстве для повышения прочности всего металлического, от рам автомобилей до проводов линий электропередачи. Но материаловеды, как ни странно, до сих пор не имели возможности наблюдать за ходом этого важного процесса в режиме реального времени.
Учёные из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS) впервые в деталях выявили механизмы, управляющие фундаментальным процессом упрочнения при деформировании.
Профессор прикладной физики Франс Спепен, старший автор исследования, рассказал, что для моделирования деформационного упрочнения используют компьютерные программы. Но чтобы повысить эффективность компьютерных моделей, необходимо как можно больше знать об основных закономерностях процесса. Так вот, смысл достижения специалистов из SEAS состоит в возможности наблюдать непосредственно и воочию универсальный процесс.
Ранее наблюдение в режиме реального времени было невозможно, поскольку атомные структуры видны только через электронный микроскоп. Исследователи могут сравнить свойства структуры до и после деформации, но имеют лишь ограниченное представление о том, что происходит во время гибки или ковки металла. Предыдущие исследования показали, что изменения в структуре, известные как дислокации, образуют сеть дефектов, которые и вызывают деформационное упрочнение.
Научный сотрудник SEAS Илья Светлицкий пояснил, что оставалась непонятной вся сложность приводящих к упрочнению взаимодействий между дефектами в кристаллах на атомарном уровне. Чтобы досконально рассмотреть эту важную часть процесса, исследователи обратились к коллоидным кристаллам. Так называют частицы, которые примерно в 10 тысяч раз крупнее атомов и самопроизвольно образуют кристаллическую структуру при высоких концентрациях. Если конкретнее, то для имитации атомарных систем использовали массу шариков из кремнезёма диаметром 1,55 микрометра в смеси воды и растворителя диметилсульфоксид (ДМСО).
Такие кристаллы пригодны для имитации атомарных систем, потому что и у первых, и у вторых очень схожие структуры, которые претерпевают одинаковые фазовые переходы и обладают идентичными дефектами. Однако коллоидные кристаллы очень мягкие, так как представляют собой всего лишь взвесь частиц.
Итак, исследователи вырастили коллоидные кристаллы, состоящие из миллионов частиц, и наблюдали за каждой частицей с помощью оптического микроскопа. Создав нагрузку сжатием в цилиндрическом сосуде, они смогли фиксировать движение каждой частицы.
Удивительно, но коллоидные кристаллы подвергаются значительному деформационному упрочнению — даже более сильному, чем любой другой материал. С поправкой на размер частиц эти ультрамягкие материалы могут становиться намного прочнее большинства металлов.
Соавтор исследования аспирант Сонсу Ким сказал, что учёные не ожидали упрочнения коллоидных кристаллов за счёт приложения силы. По сути, взаимодействия между частицами слишком просты по сравнению с обычными металлами. И всё же физики обнаружили, что эти мягкие материалы демонстрируют несомненное упрочнение при деформировании, даже большее, чем у большинства металлов, таких как медь и алюминий.
Деформационное упрочнение впервые наблюдалось в коллоидных кристаллах. Это показывает, что процесс в первую очередь определяется геометрией частиц и дефектами в структуре. Кристаллы стали прочнее из-за дислокационных дефектов, то есть благодаря тому, как элементы взаимодействовали и переплетались друг с другом.
Наблюдения раскрыли универсальные механизмы деформационного упрочнения, которые также применимы в более общем плане ко всем материалам, даже к тем, которые невозможно изучить с помощью оптических микроскопов.
Подытоживая успех младших коллег, профессор физики Дэвид Вайц оценил проведённое исследование как фундаментальное и универсальное. Деформационное упрочнение превращает кашицу из частиц в очень прочные материалы.
Более глубокое понимание прочности материалов может оказать в дальнейшем широкомасштабное влияние на проектирование и промышленность, считают учёные из SEAS.
Учёные из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS) впервые в деталях выявили механизмы, управляющие фундаментальным процессом упрочнения при деформировании.
Профессор прикладной физики Франс Спепен, старший автор исследования, рассказал, что для моделирования деформационного упрочнения используют компьютерные программы. Но чтобы повысить эффективность компьютерных моделей, необходимо как можно больше знать об основных закономерностях процесса. Так вот, смысл достижения специалистов из SEAS состоит в возможности наблюдать непосредственно и воочию универсальный процесс.
Ранее наблюдение в режиме реального времени было невозможно, поскольку атомные структуры видны только через электронный микроскоп. Исследователи могут сравнить свойства структуры до и после деформации, но имеют лишь ограниченное представление о том, что происходит во время гибки или ковки металла. Предыдущие исследования показали, что изменения в структуре, известные как дислокации, образуют сеть дефектов, которые и вызывают деформационное упрочнение.
Научный сотрудник SEAS Илья Светлицкий пояснил, что оставалась непонятной вся сложность приводящих к упрочнению взаимодействий между дефектами в кристаллах на атомарном уровне. Чтобы досконально рассмотреть эту важную часть процесса, исследователи обратились к коллоидным кристаллам. Так называют частицы, которые примерно в 10 тысяч раз крупнее атомов и самопроизвольно образуют кристаллическую структуру при высоких концентрациях. Если конкретнее, то для имитации атомарных систем использовали массу шариков из кремнезёма диаметром 1,55 микрометра в смеси воды и растворителя диметилсульфоксид (ДМСО).
Такие кристаллы пригодны для имитации атомарных систем, потому что и у первых, и у вторых очень схожие структуры, которые претерпевают одинаковые фазовые переходы и обладают идентичными дефектами. Однако коллоидные кристаллы очень мягкие, так как представляют собой всего лишь взвесь частиц.
Итак, исследователи вырастили коллоидные кристаллы, состоящие из миллионов частиц, и наблюдали за каждой частицей с помощью оптического микроскопа. Создав нагрузку сжатием в цилиндрическом сосуде, они смогли фиксировать движение каждой частицы.
Удивительно, но коллоидные кристаллы подвергаются значительному деформационному упрочнению — даже более сильному, чем любой другой материал. С поправкой на размер частиц эти ультрамягкие материалы могут становиться намного прочнее большинства металлов.
Соавтор исследования аспирант Сонсу Ким сказал, что учёные не ожидали упрочнения коллоидных кристаллов за счёт приложения силы. По сути, взаимодействия между частицами слишком просты по сравнению с обычными металлами. И всё же физики обнаружили, что эти мягкие материалы демонстрируют несомненное упрочнение при деформировании, даже большее, чем у большинства металлов, таких как медь и алюминий.
Деформационное упрочнение впервые наблюдалось в коллоидных кристаллах. Это показывает, что процесс в первую очередь определяется геометрией частиц и дефектами в структуре. Кристаллы стали прочнее из-за дислокационных дефектов, то есть благодаря тому, как элементы взаимодействовали и переплетались друг с другом.
Наблюдения раскрыли универсальные механизмы деформационного упрочнения, которые также применимы в более общем плане ко всем материалам, даже к тем, которые невозможно изучить с помощью оптических микроскопов.
Подытоживая успех младших коллег, профессор физики Дэвид Вайц оценил проведённое исследование как фундаментальное и универсальное. Деформационное упрочнение превращает кашицу из частиц в очень прочные материалы.
Более глубокое понимание прочности материалов может оказать в дальнейшем широкомасштабное влияние на проектирование и промышленность, считают учёные из SEAS.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Маск на грани: третья космическая катастрофа за год
Но эксперты уверены, что миллиардеру все снова сойдет с рук....
Аллигаторова щука: 100 миллионов лет... без эволюции
Как гигантская пресноводная рыба пережила даже динозавров?...
Антарктида стремительно зеленеет: за 40 лет там стало в 10 раз больше зелени
Почему так происходит и как это повлияет на климат по всей планете....
7 из 10: отключен еще один прибор «Вояджера-2»
Чем еще пришлось пожертвовать инженерам NASA?...
Спустя 500 лет останки Колумба наконец-то обнаружены!
Ученым понадобилось более 20 лет, чтобы доказать их подлинность....
Иисус Христос пользовался... волшебной палочкой
Об этом говорят фрески и другие древние изображения....
Таинственные области в мантии Земли оказались не тем, чем их считали ученые
Новое исследование показало, что все может быть намного проще....
Фотоны могут путешествовать в прошлое
Звучит поразительно, но физики обнаружили «отрицательное время» в странном эксперименте....
Долой болты: будущее прочных соединений — за метаповерхностями
Управляемый крепёж для аэрокосмической отрасли, робототехники и медицины....
Тысячи компьютеров c Linux заражены вредоносным ПО
Эпидемия началась ещё в 2021 году....
Колумб был не первым: за сотни лет до него викинги вовсю торговали с эскимосами
Об этом рассказали бивни средневековых моржей....
Мавзолей римского гладиатора оказался «общежитием»
Ученые разбираются, откуда в саркофаге бойца взялись кости 12 человек....
Невероятный прорыв в науке: два человека смогли осознанно пообщаться во сне
Похоже, в нашей жизни скоро начнется новая эра....
В Америке действует секретная программа по поиску и сокрытию информации об НЛО
Конгресс США в гневе, ведь Пентагон водил чиновников за нос много лет....
Средство для бесследного заживления ран нашли в глистах
Брезгливость vs польза....
Археологи восстановили приёмы боя на копьях в бронзовом веке
Экспериментальная археология проливает свет на технику обращения с оружием....