
Лишь сегодня стало известно как именно ковка улучшает металл
Ещё в бронзовом и железном веках кузнецы выяснили, что качество гнутого и кованого металла повышалось. Процесс этот, известный как деформационное упрочнение, широко используется в металлургии и производстве для повышения прочности всего металлического, от рам автомобилей до проводов линий электропередачи. Но материаловеды, как ни странно, до сих пор не имели возможности наблюдать за ходом этого важного процесса в режиме реального времени.
Учёные из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS) впервые в деталях выявили механизмы, управляющие фундаментальным процессом упрочнения при деформировании.
Профессор прикладной физики Франс Спепен, старший автор исследования, рассказал, что для моделирования деформационного упрочнения используют компьютерные программы. Но чтобы повысить эффективность компьютерных моделей, необходимо как можно больше знать об основных закономерностях процесса. Так вот, смысл достижения специалистов из SEAS состоит в возможности наблюдать непосредственно и воочию универсальный процесс.
Ранее наблюдение в режиме реального времени было невозможно, поскольку атомные структуры видны только через электронный микроскоп. Исследователи могут сравнить свойства структуры до и после деформации, но имеют лишь ограниченное представление о том, что происходит во время гибки или ковки металла. Предыдущие исследования показали, что изменения в структуре, известные как дислокации, образуют сеть дефектов, которые и вызывают деформационное упрочнение.
Научный сотрудник SEAS Илья Светлицкий пояснил, что оставалась непонятной вся сложность приводящих к упрочнению взаимодействий между дефектами в кристаллах на атомарном уровне. Чтобы досконально рассмотреть эту важную часть процесса, исследователи обратились к коллоидным кристаллам. Так называют частицы, которые примерно в 10 тысяч раз крупнее атомов и самопроизвольно образуют кристаллическую структуру при высоких концентрациях. Если конкретнее, то для имитации атомарных систем использовали массу шариков из кремнезёма диаметром 1,55 микрометра в смеси воды и растворителя диметилсульфоксид (ДМСО).
Такие кристаллы пригодны для имитации атомарных систем, потому что и у первых, и у вторых очень схожие структуры, которые претерпевают одинаковые фазовые переходы и обладают идентичными дефектами. Однако коллоидные кристаллы очень мягкие, так как представляют собой всего лишь взвесь частиц.
Итак, исследователи вырастили коллоидные кристаллы, состоящие из миллионов частиц, и наблюдали за каждой частицей с помощью оптического микроскопа. Создав нагрузку сжатием в цилиндрическом сосуде, они смогли фиксировать движение каждой частицы.
Удивительно, но коллоидные кристаллы подвергаются значительному деформационному упрочнению — даже более сильному, чем любой другой материал. С поправкой на размер частиц эти ультрамягкие материалы могут становиться намного прочнее большинства металлов.
Соавтор исследования аспирант Сонсу Ким сказал, что учёные не ожидали упрочнения коллоидных кристаллов за счёт приложения силы. По сути, взаимодействия между частицами слишком просты по сравнению с обычными металлами. И всё же физики обнаружили, что эти мягкие материалы демонстрируют несомненное упрочнение при деформировании, даже большее, чем у большинства металлов, таких как медь и алюминий.
Деформационное упрочнение впервые наблюдалось в коллоидных кристаллах. Это показывает, что процесс в первую очередь определяется геометрией частиц и дефектами в структуре. Кристаллы стали прочнее из-за дислокационных дефектов, то есть благодаря тому, как элементы взаимодействовали и переплетались друг с другом.
Наблюдения раскрыли универсальные механизмы деформационного упрочнения, которые также применимы в более общем плане ко всем материалам, даже к тем, которые невозможно изучить с помощью оптических микроскопов.
Подытоживая успех младших коллег, профессор физики Дэвид Вайц оценил проведённое исследование как фундаментальное и универсальное. Деформационное упрочнение превращает кашицу из частиц в очень прочные материалы.
Более глубокое понимание прочности материалов может оказать в дальнейшем широкомасштабное влияние на проектирование и промышленность, считают учёные из SEAS.
Учёные из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS) впервые в деталях выявили механизмы, управляющие фундаментальным процессом упрочнения при деформировании.
Профессор прикладной физики Франс Спепен, старший автор исследования, рассказал, что для моделирования деформационного упрочнения используют компьютерные программы. Но чтобы повысить эффективность компьютерных моделей, необходимо как можно больше знать об основных закономерностях процесса. Так вот, смысл достижения специалистов из SEAS состоит в возможности наблюдать непосредственно и воочию универсальный процесс.
Ранее наблюдение в режиме реального времени было невозможно, поскольку атомные структуры видны только через электронный микроскоп. Исследователи могут сравнить свойства структуры до и после деформации, но имеют лишь ограниченное представление о том, что происходит во время гибки или ковки металла. Предыдущие исследования показали, что изменения в структуре, известные как дислокации, образуют сеть дефектов, которые и вызывают деформационное упрочнение.
Научный сотрудник SEAS Илья Светлицкий пояснил, что оставалась непонятной вся сложность приводящих к упрочнению взаимодействий между дефектами в кристаллах на атомарном уровне. Чтобы досконально рассмотреть эту важную часть процесса, исследователи обратились к коллоидным кристаллам. Так называют частицы, которые примерно в 10 тысяч раз крупнее атомов и самопроизвольно образуют кристаллическую структуру при высоких концентрациях. Если конкретнее, то для имитации атомарных систем использовали массу шариков из кремнезёма диаметром 1,55 микрометра в смеси воды и растворителя диметилсульфоксид (ДМСО).
Такие кристаллы пригодны для имитации атомарных систем, потому что и у первых, и у вторых очень схожие структуры, которые претерпевают одинаковые фазовые переходы и обладают идентичными дефектами. Однако коллоидные кристаллы очень мягкие, так как представляют собой всего лишь взвесь частиц.
Итак, исследователи вырастили коллоидные кристаллы, состоящие из миллионов частиц, и наблюдали за каждой частицей с помощью оптического микроскопа. Создав нагрузку сжатием в цилиндрическом сосуде, они смогли фиксировать движение каждой частицы.
Удивительно, но коллоидные кристаллы подвергаются значительному деформационному упрочнению — даже более сильному, чем любой другой материал. С поправкой на размер частиц эти ультрамягкие материалы могут становиться намного прочнее большинства металлов.
Соавтор исследования аспирант Сонсу Ким сказал, что учёные не ожидали упрочнения коллоидных кристаллов за счёт приложения силы. По сути, взаимодействия между частицами слишком просты по сравнению с обычными металлами. И всё же физики обнаружили, что эти мягкие материалы демонстрируют несомненное упрочнение при деформировании, даже большее, чем у большинства металлов, таких как медь и алюминий.
Деформационное упрочнение впервые наблюдалось в коллоидных кристаллах. Это показывает, что процесс в первую очередь определяется геометрией частиц и дефектами в структуре. Кристаллы стали прочнее из-за дислокационных дефектов, то есть благодаря тому, как элементы взаимодействовали и переплетались друг с другом.
Наблюдения раскрыли универсальные механизмы деформационного упрочнения, которые также применимы в более общем плане ко всем материалам, даже к тем, которые невозможно изучить с помощью оптических микроскопов.
Подытоживая успех младших коллег, профессор физики Дэвид Вайц оценил проведённое исследование как фундаментальное и универсальное. Деформационное упрочнение превращает кашицу из частиц в очень прочные материалы.
Более глубокое понимание прочности материалов может оказать в дальнейшем широкомасштабное влияние на проектирование и промышленность, считают учёные из SEAS.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Турецкие археологи обнаружили затерянный мост, способный переписать всю раннюю историю человечества
Оказалось, что научная сенсация все это время... валялась у ученых буквально под ногами...

Секретная база в Гренландии, спрятанная 30-метровым слоем льда, угрожает всему миру
Гляциолог Уильям Колган говорит: «Американские военные думали, что это никогда не вскроется, но теперь...»...

Генетики вычислили, какую страшную цену заплатили наши предки за высокий интеллект
Новое исследование еще раз доказало, что эволюция требует огромных жертв...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

В Антарктиде обнаружен метановый «спящий гигант», который очень быстро просыпается. И это плохая новость
Ученые в тревоге задаются вопросом: означают ли десятки газовых гейзеров под водой, что эффект домино уже запущен?...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...

В самом большом кратере Луны происходит что-то очень странное
Поэтому астронавты планируют туда заглянуть в самое ближайшее время...

Ученые выяснили: в каком возрасте наш мозг достигает пика своей активности
Почему же 20-30 лет оказались стереотипом, далеким от реальной жизни?...

Археологи поражены: 404 тысячи лет назад «римляне» спокойно разделали гигантского слона... 3-сантиметровыми ножичками
Получается, что древние охотники могли справиться с самым большим животным в Европе буквально голыми руками?...

«Черный ящик» раскрыл тайну летучей мыши, пожирающей птиц прямо в полете
Ученые совершенно не ожидали, что рукокрылый властелин ночного неба по свирепости и охотничьему мастерству даст фору даже соколам...

Астрофизики Гавайского университета неожиданно разгадали тайну… солнечного дождя
Рассказываем, почему новое открытие важно для каждого жителя Земли...

Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...

Мог ли великий художник Клод Моне видеть в ультрафиолетовом спектре, как пчела?
Историки уверены: после операции на глазах с французским живописцем стали происходит очень странные вещи...