Лишь сегодня стало известно как именно ковка улучшает металл
Ещё в бронзовом и железном веках кузнецы выяснили, что качество гнутого и кованого металла повышалось. Процесс этот, известный как деформационное упрочнение, широко используется в металлургии и производстве для повышения прочности всего металлического, от рам автомобилей до проводов линий электропередачи. Но материаловеды, как ни странно, до сих пор не имели возможности наблюдать за ходом этого важного процесса в режиме реального времени.
Учёные из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS) впервые в деталях выявили механизмы, управляющие фундаментальным процессом упрочнения при деформировании.
Профессор прикладной физики Франс Спепен, старший автор исследования, рассказал, что для моделирования деформационного упрочнения используют компьютерные программы. Но чтобы повысить эффективность компьютерных моделей, необходимо как можно больше знать об основных закономерностях процесса. Так вот, смысл достижения специалистов из SEAS состоит в возможности наблюдать непосредственно и воочию универсальный процесс.
Ранее наблюдение в режиме реального времени было невозможно, поскольку атомные структуры видны только через электронный микроскоп. Исследователи могут сравнить свойства структуры до и после деформации, но имеют лишь ограниченное представление о том, что происходит во время гибки или ковки металла. Предыдущие исследования показали, что изменения в структуре, известные как дислокации, образуют сеть дефектов, которые и вызывают деформационное упрочнение.
Научный сотрудник SEAS Илья Светлицкий пояснил, что оставалась непонятной вся сложность приводящих к упрочнению взаимодействий между дефектами в кристаллах на атомарном уровне. Чтобы досконально рассмотреть эту важную часть процесса, исследователи обратились к коллоидным кристаллам. Так называют частицы, которые примерно в 10 тысяч раз крупнее атомов и самопроизвольно образуют кристаллическую структуру при высоких концентрациях. Если конкретнее, то для имитации атомарных систем использовали массу шариков из кремнезёма диаметром 1,55 микрометра в смеси воды и растворителя диметилсульфоксид (ДМСО).
Такие кристаллы пригодны для имитации атомарных систем, потому что и у первых, и у вторых очень схожие структуры, которые претерпевают одинаковые фазовые переходы и обладают идентичными дефектами. Однако коллоидные кристаллы очень мягкие, так как представляют собой всего лишь взвесь частиц.
Итак, исследователи вырастили коллоидные кристаллы, состоящие из миллионов частиц, и наблюдали за каждой частицей с помощью оптического микроскопа. Создав нагрузку сжатием в цилиндрическом сосуде, они смогли фиксировать движение каждой частицы.
Удивительно, но коллоидные кристаллы подвергаются значительному деформационному упрочнению — даже более сильному, чем любой другой материал. С поправкой на размер частиц эти ультрамягкие материалы могут становиться намного прочнее большинства металлов.
Соавтор исследования аспирант Сонсу Ким сказал, что учёные не ожидали упрочнения коллоидных кристаллов за счёт приложения силы. По сути, взаимодействия между частицами слишком просты по сравнению с обычными металлами. И всё же физики обнаружили, что эти мягкие материалы демонстрируют несомненное упрочнение при деформировании, даже большее, чем у большинства металлов, таких как медь и алюминий.
Деформационное упрочнение впервые наблюдалось в коллоидных кристаллах. Это показывает, что процесс в первую очередь определяется геометрией частиц и дефектами в структуре. Кристаллы стали прочнее из-за дислокационных дефектов, то есть благодаря тому, как элементы взаимодействовали и переплетались друг с другом.
Наблюдения раскрыли универсальные механизмы деформационного упрочнения, которые также применимы в более общем плане ко всем материалам, даже к тем, которые невозможно изучить с помощью оптических микроскопов.
Подытоживая успех младших коллег, профессор физики Дэвид Вайц оценил проведённое исследование как фундаментальное и универсальное. Деформационное упрочнение превращает кашицу из частиц в очень прочные материалы.
Более глубокое понимание прочности материалов может оказать в дальнейшем широкомасштабное влияние на проектирование и промышленность, считают учёные из SEAS.
Учёные из Гарвардской школы инженерных и прикладных наук имени Джона Полсона (SEAS) впервые в деталях выявили механизмы, управляющие фундаментальным процессом упрочнения при деформировании.
Профессор прикладной физики Франс Спепен, старший автор исследования, рассказал, что для моделирования деформационного упрочнения используют компьютерные программы. Но чтобы повысить эффективность компьютерных моделей, необходимо как можно больше знать об основных закономерностях процесса. Так вот, смысл достижения специалистов из SEAS состоит в возможности наблюдать непосредственно и воочию универсальный процесс.
Ранее наблюдение в режиме реального времени было невозможно, поскольку атомные структуры видны только через электронный микроскоп. Исследователи могут сравнить свойства структуры до и после деформации, но имеют лишь ограниченное представление о том, что происходит во время гибки или ковки металла. Предыдущие исследования показали, что изменения в структуре, известные как дислокации, образуют сеть дефектов, которые и вызывают деформационное упрочнение.
Научный сотрудник SEAS Илья Светлицкий пояснил, что оставалась непонятной вся сложность приводящих к упрочнению взаимодействий между дефектами в кристаллах на атомарном уровне. Чтобы досконально рассмотреть эту важную часть процесса, исследователи обратились к коллоидным кристаллам. Так называют частицы, которые примерно в 10 тысяч раз крупнее атомов и самопроизвольно образуют кристаллическую структуру при высоких концентрациях. Если конкретнее, то для имитации атомарных систем использовали массу шариков из кремнезёма диаметром 1,55 микрометра в смеси воды и растворителя диметилсульфоксид (ДМСО).
Такие кристаллы пригодны для имитации атомарных систем, потому что и у первых, и у вторых очень схожие структуры, которые претерпевают одинаковые фазовые переходы и обладают идентичными дефектами. Однако коллоидные кристаллы очень мягкие, так как представляют собой всего лишь взвесь частиц.
Итак, исследователи вырастили коллоидные кристаллы, состоящие из миллионов частиц, и наблюдали за каждой частицей с помощью оптического микроскопа. Создав нагрузку сжатием в цилиндрическом сосуде, они смогли фиксировать движение каждой частицы.
Удивительно, но коллоидные кристаллы подвергаются значительному деформационному упрочнению — даже более сильному, чем любой другой материал. С поправкой на размер частиц эти ультрамягкие материалы могут становиться намного прочнее большинства металлов.
Соавтор исследования аспирант Сонсу Ким сказал, что учёные не ожидали упрочнения коллоидных кристаллов за счёт приложения силы. По сути, взаимодействия между частицами слишком просты по сравнению с обычными металлами. И всё же физики обнаружили, что эти мягкие материалы демонстрируют несомненное упрочнение при деформировании, даже большее, чем у большинства металлов, таких как медь и алюминий.
Деформационное упрочнение впервые наблюдалось в коллоидных кристаллах. Это показывает, что процесс в первую очередь определяется геометрией частиц и дефектами в структуре. Кристаллы стали прочнее из-за дислокационных дефектов, то есть благодаря тому, как элементы взаимодействовали и переплетались друг с другом.
Наблюдения раскрыли универсальные механизмы деформационного упрочнения, которые также применимы в более общем плане ко всем материалам, даже к тем, которые невозможно изучить с помощью оптических микроскопов.
Подытоживая успех младших коллег, профессор физики Дэвид Вайц оценил проведённое исследование как фундаментальное и универсальное. Деформационное упрочнение превращает кашицу из частиц в очень прочные материалы.
Более глубокое понимание прочности материалов может оказать в дальнейшем широкомасштабное влияние на проектирование и промышленность, считают учёные из SEAS.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Черная дата Тихоокеанского флота: 45 лет назад, 7 января 1981 года, разом погибли 12 адмиралов, три генерала, десятки высших офицеров
Следствие подозревало диверсию, но разгадка катастрофы оказалась шокирующе банальной...
Секретный дневник врачей Ленина: Что нового о смерти вождя рассказали документы, до сих пор закрытые от широкой публики?
По словам российского ученого, первого руководителя Советского государства погубила болезнь, от которой в начале XX века страдали миллионы по всему миру...
Почему Кубань ушла в Азовское море: история одной рукотворной катастрофы
Историки говорят: казаки не только отрезали великую реку от Черного моря, но уничтожили популяцию азовского осетра, лучшую на планете...
На Марсе нам не место! Американский ученый жестко объяснил самую главную проблему переселенцев на Красную планету
Почему новое человечество уже не сможет вернуться на Землю?...
Библейский Рай был замечен… с орбиты: подсказку дало русло древней реки шириной 5 километров
Это было исключительно благодатное место на перекрестке четырех великих рек. Неудивительно, что здесь родились древнейшие цивилизации в истории...
Загадка перевернутых пирамид: 38 000 лет назад на Земле могла существовать высокоразвитая цивилизация
Исследователь Мэтью Лакруа уверен, что обнаружил систему древних символов, которая когда-то объединяла все континенты...
Почему МКС передумали топить: что придумали вместо этого американские конгрессмены?
Эксперты называют новый проект «орбитальной рулеткой». И на это есть веские причины...
Предсказание о судьбе Гренландии: оказывается, еще в 1985 году писатель Юлиан Семенов предвидел действия США
Почему современные аргентинцы были поражены точностью советского детективного романа?...
1400 лет в изоляции на «генетическом острове»: на юге Греции найдены прямые потомки спартанцев
Ученые подтвердили: ДНК маниотов не менялась полторы тысячи лет, а их рода восходят ко временам Троянской войны...
Латали озоновые дыры, но в итоге заразили всю атмосферу «вечными» токсичными веществами
Эксперты говорят: новая неразрушающаяся «зараза» будет находиться в воздухе столетиями. Пик проблем для человечества еще впереди...
Лев Толстой на утюгах: кто и зачем поместил туда портрет великого русского писателя?
Пропаганда начала ХХ века: как боролись с главным еретиком Российской империи...
Куда уходит Балтийское море: российский океанолог объяснил, как работает уникальный феномен
По словам ученых, аномалия опасна для людей, но жизненно необходима для Балтики...
Секрет пророчества Жириновского: ректор МГИМО раскрыл феномен российского политика
По словам ученого, лидер ЛДПР «не был Вангой», но имел уникальный талант видеть особые связи между людьми и событиями...