
Открытие ученых Калифорнийского университета может привести к более долговечным и недорогим солнечным батареям
Использование усиленного галогенида перовскита вместо кремния может привести к созданию недорогих устройств, которые лучше противостоят свету и теплу.
Несмотря на все усилия по преобразованию энергоснабжения в возобновляемые источники, солнечная энергия по-прежнему составляет немногим менее 3% электроэнергии. Отчасти это связано с относительно высокой стоимостью производства солнечных элементов.
Одним из способов снижения себестоимости производства может быть разработка солнечных элементов, в которых используются менее дорогие материалы, чем в современных моделях на основе кремния. Чтобы добиться этого, некоторые инженеры сосредоточились на галоидном перовските, типе искусственного материала с повторяющимися кристаллами в форме кубов.
Теоретически солнечные элементы на основе перовскита могут быть изготовлены из сырья, которое стоит дешевле и более доступно, чем кремний; они также могут быть произведены с использованием меньшего количества энергии и более простого производственного процесса.
Но до сих пор камнем преткновения было то, что перовскит разрушается под воздействием света и температуры, что особенно проблематично для устройств, предназначенных для получения солнечной энергии.
Международное исследовательское сотрудничество под руководством Калифорнийского университета в Лос-Анджелесе разработало способ использования перовскита в солнечных элементах, защищая его от условий, вызывающих разрушение. В исследовании, опубликованном недавно в Nature Materials , ученые добавили небольшое количество ионов — электрически заряженных атомов — металла под названием неодим непосредственно в перовскит.
Они обнаружили не только то, что модифицированный перовскит был намного более стойким при воздействии света и тепла, но и более эффективно преобразовывал свет в электричество.
Способность галоидного перовскита преобразовывать свет в электричество обусловлена тем, что его молекулы образуют повторяющуюся сетку из кубов. Эта структура удерживается вместе за счет связей между ионами с противоположными зарядами. Но свет и тепло заставляют отрицательно заряженные ионы выделяться из перовскита, что повреждает кристаллическую структуру и снижает способность материала к преобразованию энергии.
Неодим обычно используется в микрофонах, динамиках, лазерах и декоративном стекле. Его ионы как раз такого размера, чтобы уместиться внутри кубического кристалла перовскита, и они несут три положительных заряда, которые, как предположили ученые, помогут удерживать на месте отрицательно заряженные ионы.
Исследователи добавили около восьми ионов неодима на каждые 10000 молекул перовскита, а затем проверили эффективность материала в солнечных батареях. Работая на максимальной мощности и подвергаясь непрерывному воздействию света в течение более 1000 часов, солнечный элемент, использующий модифицированный перовскит, сохранил около 93% своей эффективности при преобразовании света в электричество. Напротив, солнечный элемент, использующий стандартный перовскит, потерял половину своей эффективности преобразования энергии через 300 часов в тех же условиях.
Чтобы проверить способность материала выдерживать высокие температуры, исследователи нагрели солнечные элементы из обоих материалов примерно до 180 градусов по Фаренгейту. Солнечная батарея с аугментированным перовскитом сохранила около 86% своей эффективности после более чем 2000 часов, в то время как стандартное перовскитовое устройство за это время полностью потеряло способность преобразовывать свет в электричество.
Несмотря на все усилия по преобразованию энергоснабжения в возобновляемые источники, солнечная энергия по-прежнему составляет немногим менее 3% электроэнергии. Отчасти это связано с относительно высокой стоимостью производства солнечных элементов.
Одним из способов снижения себестоимости производства может быть разработка солнечных элементов, в которых используются менее дорогие материалы, чем в современных моделях на основе кремния. Чтобы добиться этого, некоторые инженеры сосредоточились на галоидном перовските, типе искусственного материала с повторяющимися кристаллами в форме кубов.
Теоретически солнечные элементы на основе перовскита могут быть изготовлены из сырья, которое стоит дешевле и более доступно, чем кремний; они также могут быть произведены с использованием меньшего количества энергии и более простого производственного процесса.
Но до сих пор камнем преткновения было то, что перовскит разрушается под воздействием света и температуры, что особенно проблематично для устройств, предназначенных для получения солнечной энергии.
Международное исследовательское сотрудничество под руководством Калифорнийского университета в Лос-Анджелесе разработало способ использования перовскита в солнечных элементах, защищая его от условий, вызывающих разрушение. В исследовании, опубликованном недавно в Nature Materials , ученые добавили небольшое количество ионов — электрически заряженных атомов — металла под названием неодим непосредственно в перовскит.
Они обнаружили не только то, что модифицированный перовскит был намного более стойким при воздействии света и тепла, но и более эффективно преобразовывал свет в электричество.
Способность галоидного перовскита преобразовывать свет в электричество обусловлена тем, что его молекулы образуют повторяющуюся сетку из кубов. Эта структура удерживается вместе за счет связей между ионами с противоположными зарядами. Но свет и тепло заставляют отрицательно заряженные ионы выделяться из перовскита, что повреждает кристаллическую структуру и снижает способность материала к преобразованию энергии.
Неодим обычно используется в микрофонах, динамиках, лазерах и декоративном стекле. Его ионы как раз такого размера, чтобы уместиться внутри кубического кристалла перовскита, и они несут три положительных заряда, которые, как предположили ученые, помогут удерживать на месте отрицательно заряженные ионы.
Исследователи добавили около восьми ионов неодима на каждые 10000 молекул перовскита, а затем проверили эффективность материала в солнечных батареях. Работая на максимальной мощности и подвергаясь непрерывному воздействию света в течение более 1000 часов, солнечный элемент, использующий модифицированный перовскит, сохранил около 93% своей эффективности при преобразовании света в электричество. Напротив, солнечный элемент, использующий стандартный перовскит, потерял половину своей эффективности преобразования энергии через 300 часов в тех же условиях.
Чтобы проверить способность материала выдерживать высокие температуры, исследователи нагрели солнечные элементы из обоих материалов примерно до 180 градусов по Фаренгейту. Солнечная батарея с аугментированным перовскитом сохранила около 86% своей эффективности после более чем 2000 часов, в то время как стандартное перовскитовое устройство за это время полностью потеряло способность преобразовывать свет в электричество.
- Евгения Бусина
- UCLA
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Ученые поражены: у растений есть секретный второй набор корней глубоко под землей
Это не только сенсация в ботанике, это вообще переворот в науке....

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

Эксперты обнаружили существ, переживших прямой удар астероида, который уничтожил динозавров
Почему конец света — это вовсе не повод, чтобы вымирать?...

32 удивительных подарка за последние 20 лет: ученые пытаются понять, за что косатки «балуют» людей
Природная доброта? Любопытство? Желание выйти на контакт?...

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....