Открытие ученых Калифорнийского университета может привести к более долговечным и недорогим солнечным батареям
Использование усиленного галогенида перовскита вместо кремния может привести к созданию недорогих устройств, которые лучше противостоят свету и теплу.
Несмотря на все усилия по преобразованию энергоснабжения в возобновляемые источники, солнечная энергия по-прежнему составляет немногим менее 3% электроэнергии. Отчасти это связано с относительно высокой стоимостью производства солнечных элементов.
Одним из способов снижения себестоимости производства может быть разработка солнечных элементов, в которых используются менее дорогие материалы, чем в современных моделях на основе кремния. Чтобы добиться этого, некоторые инженеры сосредоточились на галоидном перовските, типе искусственного материала с повторяющимися кристаллами в форме кубов.
Теоретически солнечные элементы на основе перовскита могут быть изготовлены из сырья, которое стоит дешевле и более доступно, чем кремний; они также могут быть произведены с использованием меньшего количества энергии и более простого производственного процесса.
Но до сих пор камнем преткновения было то, что перовскит разрушается под воздействием света и температуры, что особенно проблематично для устройств, предназначенных для получения солнечной энергии.
Международное исследовательское сотрудничество под руководством Калифорнийского университета в Лос-Анджелесе разработало способ использования перовскита в солнечных элементах, защищая его от условий, вызывающих разрушение. В исследовании, опубликованном недавно в Nature Materials , ученые добавили небольшое количество ионов — электрически заряженных атомов — металла под названием неодим непосредственно в перовскит.
Они обнаружили не только то, что модифицированный перовскит был намного более стойким при воздействии света и тепла, но и более эффективно преобразовывал свет в электричество.
Способность галоидного перовскита преобразовывать свет в электричество обусловлена тем, что его молекулы образуют повторяющуюся сетку из кубов. Эта структура удерживается вместе за счет связей между ионами с противоположными зарядами. Но свет и тепло заставляют отрицательно заряженные ионы выделяться из перовскита, что повреждает кристаллическую структуру и снижает способность материала к преобразованию энергии.
Неодим обычно используется в микрофонах, динамиках, лазерах и декоративном стекле. Его ионы как раз такого размера, чтобы уместиться внутри кубического кристалла перовскита, и они несут три положительных заряда, которые, как предположили ученые, помогут удерживать на месте отрицательно заряженные ионы.
Исследователи добавили около восьми ионов неодима на каждые 10000 молекул перовскита, а затем проверили эффективность материала в солнечных батареях. Работая на максимальной мощности и подвергаясь непрерывному воздействию света в течение более 1000 часов, солнечный элемент, использующий модифицированный перовскит, сохранил около 93% своей эффективности при преобразовании света в электричество. Напротив, солнечный элемент, использующий стандартный перовскит, потерял половину своей эффективности преобразования энергии через 300 часов в тех же условиях.
Чтобы проверить способность материала выдерживать высокие температуры, исследователи нагрели солнечные элементы из обоих материалов примерно до 180 градусов по Фаренгейту. Солнечная батарея с аугментированным перовскитом сохранила около 86% своей эффективности после более чем 2000 часов, в то время как стандартное перовскитовое устройство за это время полностью потеряло способность преобразовывать свет в электричество.
Несмотря на все усилия по преобразованию энергоснабжения в возобновляемые источники, солнечная энергия по-прежнему составляет немногим менее 3% электроэнергии. Отчасти это связано с относительно высокой стоимостью производства солнечных элементов.
Одним из способов снижения себестоимости производства может быть разработка солнечных элементов, в которых используются менее дорогие материалы, чем в современных моделях на основе кремния. Чтобы добиться этого, некоторые инженеры сосредоточились на галоидном перовските, типе искусственного материала с повторяющимися кристаллами в форме кубов.
Теоретически солнечные элементы на основе перовскита могут быть изготовлены из сырья, которое стоит дешевле и более доступно, чем кремний; они также могут быть произведены с использованием меньшего количества энергии и более простого производственного процесса.
Но до сих пор камнем преткновения было то, что перовскит разрушается под воздействием света и температуры, что особенно проблематично для устройств, предназначенных для получения солнечной энергии.
Международное исследовательское сотрудничество под руководством Калифорнийского университета в Лос-Анджелесе разработало способ использования перовскита в солнечных элементах, защищая его от условий, вызывающих разрушение. В исследовании, опубликованном недавно в Nature Materials , ученые добавили небольшое количество ионов — электрически заряженных атомов — металла под названием неодим непосредственно в перовскит.
Они обнаружили не только то, что модифицированный перовскит был намного более стойким при воздействии света и тепла, но и более эффективно преобразовывал свет в электричество.
Способность галоидного перовскита преобразовывать свет в электричество обусловлена тем, что его молекулы образуют повторяющуюся сетку из кубов. Эта структура удерживается вместе за счет связей между ионами с противоположными зарядами. Но свет и тепло заставляют отрицательно заряженные ионы выделяться из перовскита, что повреждает кристаллическую структуру и снижает способность материала к преобразованию энергии.
Неодим обычно используется в микрофонах, динамиках, лазерах и декоративном стекле. Его ионы как раз такого размера, чтобы уместиться внутри кубического кристалла перовскита, и они несут три положительных заряда, которые, как предположили ученые, помогут удерживать на месте отрицательно заряженные ионы.
Исследователи добавили около восьми ионов неодима на каждые 10000 молекул перовскита, а затем проверили эффективность материала в солнечных батареях. Работая на максимальной мощности и подвергаясь непрерывному воздействию света в течение более 1000 часов, солнечный элемент, использующий модифицированный перовскит, сохранил около 93% своей эффективности при преобразовании света в электричество. Напротив, солнечный элемент, использующий стандартный перовскит, потерял половину своей эффективности преобразования энергии через 300 часов в тех же условиях.
Чтобы проверить способность материала выдерживать высокие температуры, исследователи нагрели солнечные элементы из обоих материалов примерно до 180 градусов по Фаренгейту. Солнечная батарея с аугментированным перовскитом сохранила около 86% своей эффективности после более чем 2000 часов, в то время как стандартное перовскитовое устройство за это время полностью потеряло способность преобразовывать свет в электричество.
- Евгения Бусина
- UCLA
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
От кабанов до беспилотников: гражданские радары из Китая сделали неожиданную карьеру в российской армии
Почему украинские эксперты жалуются, что россияне ведут войну не по правилам?...
Монгольский феномен: почему русский язык в этой стране не собирается сдавать позиции?
Новое исследование показало: русский уже победил китайский, теперь пора «разобраться» с английским...
20-летнее исследование увенчалось полным успехом: ученые научились запускать самовосстановление... в сердце
Эксперты говорят: пробуждение спящих генов опровергает все медицинские догмы и дает надежду миллионам людей по всему миру...
Археологи обнаружили загадочную 2000-летнюю подземную комнату в Шотландии
Находка вызвала жаркие споры среди историков, но тайна до сих пор не раскрыта...
Автомобиль Tesla снова в центре громкой истории: В него на полном ходу, похоже, врезался... метеорит
Эксперты говорят: если все подтвердится, это будет первый такой случай истории...
Русская ученая считает, что это животное поможет людям... жить 200 лет
Полярные киты могут жить столетиями, и теперь биологи знают их секрет...
Российский астроном открыл 16-ю комету: Почему именно она поразила ученых?
Успеют ли астрофизики раскрыть все тайны gb00810, ведь у них всего несколько недель...
Почему ученые по всему миру восприняли в штыки план Илона Маска «затемнить Солнце»?
В ответ миллиардер назвал экспертов паникерами, которые мешают ему помочь человечеству решить одну из главных проблем современности...
Уральские ученые заставили «говорить» кости жителей легендарного Аркаима
Возможно, наука стала на шаг ближе к раскрытию главной тайны самого загадочного города на территории России...
В октябре 2025 года ураган Халонг на Аляске унес тысячи древних артефактов в океан
Ученые называют случившееся крупнейшей археологической катастрофой за последнее время. Будет ли восстановлено наследие целого народа?...