
Лёд-0: учёные поняли дополнительный механизм замерзания воды
Специалисты из Токийского университета обнаружили, что лёд начинает формироваться у водной поверхности через образования, подобные редкому, недавно открытому типу льда.
Лёд куда сложнее, чем многие думают. Физики знают более 20 его разновидностей, которые формируются в зависимости от сочетаний «давление + температура». Вид льда, который мы используем на кухне, известен как лёд-I, и это одна из немногих форм затвердевшей воды, существующих в естественных условиях на нашей планете.
Учёные из Японии выявили необычную форму — лёд-0, и она участвует в возникновении кристаллов в переохлаждённой воде. Зарождение льда у её поверхности может начинаться с крошечных кристалликов-предшественников со структурой, подобной редкому типу льда. Его-то и решили обозначать как лёд-0.
Учёные из Токио доказали, что структуры, подобные льду-0, могут вызывать замерзание капли у её поверхности, а не в сердцевине. Совершённое ими открытие разрешает давнюю загадку фазового перехода из одного состояния вещества в другое и должно повлиять на наше понимание того, как образуется лёд.
Кстати, кристаллизацию льда ещё называют зародышеобразованием. И происходит она обычно гетерогенно, то есть вблизи твёрдой поверхности. Обычно ожидается, что это случится наверху ёмкости с водой, где жидкость встречается со стенками.
Новое же исследование поведало, что кристаллизация также бывает прямо под поверхностью воды, которая соприкасается с воздухом. В таком случае лёд способен зарождаться вокруг крошечных кристаллических предшественников с той же специфической кольцеобразной структурой, что и лёд-0.
Компьютерное моделирование подтвердило, что капля с большей вероятностью начинает затвердевать вблизи свободной поверхности при изотермических условиях, то есть при постоянной температуре, объяснил ведущий автор исследования Ган Сан. Это разрешает давние споры о том, где легче происходит кристаллизация — на поверхности или внутри жидкости.
Предшественники (зародыши) льда-0 имеют структуру, очень похожую на переохлаждённую воду, что позволяет молекулам воды легче кристаллизоваться из неё, без необходимости непосредственно формировать структуру обычного льда.
Крошечные предшественники льда-0 образуются спонтанно в результате воздействия отрицательного давления, вызванного поверхностным натяжением воды. Как только из этих предшественников начинается кристаллизация, структуры, подобные льду-0, быстро перестраиваются в более распространённый на планете лёд-I.
Старший автор описываемого изучения льда Хадзиме Танака подчеркнул широкомасштабные последствия обретённых знаний. Ожидается, что выводы о механизме поверхностной кристаллизации воды внесут значительный вклад в различные области, включая исследования климата и науку о продуктах питания, где кристаллизация воды играет решающую роль.
Более детальное понимание природы льда может иметь бесценное значение для различных исследований. Научная работа способна помочь, например, развитию метеорологии, где образование льда с помощью предшественников, подобных льду-0, может оказывать гораздо более заметное влияние на мелкие капли воды, подобные тем, что находятся в облаках. Понимание природы льда может принести пользу и в технологиях — от пищевой промышленности до кондиционирования воздуха.
Лёд куда сложнее, чем многие думают. Физики знают более 20 его разновидностей, которые формируются в зависимости от сочетаний «давление + температура». Вид льда, который мы используем на кухне, известен как лёд-I, и это одна из немногих форм затвердевшей воды, существующих в естественных условиях на нашей планете.
Учёные из Японии выявили необычную форму — лёд-0, и она участвует в возникновении кристаллов в переохлаждённой воде. Зарождение льда у её поверхности может начинаться с крошечных кристалликов-предшественников со структурой, подобной редкому типу льда. Его-то и решили обозначать как лёд-0.
Учёные из Токио доказали, что структуры, подобные льду-0, могут вызывать замерзание капли у её поверхности, а не в сердцевине. Совершённое ими открытие разрешает давнюю загадку фазового перехода из одного состояния вещества в другое и должно повлиять на наше понимание того, как образуется лёд.
Кстати, кристаллизацию льда ещё называют зародышеобразованием. И происходит она обычно гетерогенно, то есть вблизи твёрдой поверхности. Обычно ожидается, что это случится наверху ёмкости с водой, где жидкость встречается со стенками.
Новое же исследование поведало, что кристаллизация также бывает прямо под поверхностью воды, которая соприкасается с воздухом. В таком случае лёд способен зарождаться вокруг крошечных кристаллических предшественников с той же специфической кольцеобразной структурой, что и лёд-0.
Компьютерное моделирование подтвердило, что капля с большей вероятностью начинает затвердевать вблизи свободной поверхности при изотермических условиях, то есть при постоянной температуре, объяснил ведущий автор исследования Ган Сан. Это разрешает давние споры о том, где легче происходит кристаллизация — на поверхности или внутри жидкости.
Предшественники (зародыши) льда-0 имеют структуру, очень похожую на переохлаждённую воду, что позволяет молекулам воды легче кристаллизоваться из неё, без необходимости непосредственно формировать структуру обычного льда.
Крошечные предшественники льда-0 образуются спонтанно в результате воздействия отрицательного давления, вызванного поверхностным натяжением воды. Как только из этих предшественников начинается кристаллизация, структуры, подобные льду-0, быстро перестраиваются в более распространённый на планете лёд-I.
Старший автор описываемого изучения льда Хадзиме Танака подчеркнул широкомасштабные последствия обретённых знаний. Ожидается, что выводы о механизме поверхностной кристаллизации воды внесут значительный вклад в различные области, включая исследования климата и науку о продуктах питания, где кристаллизация воды играет решающую роль.
Более детальное понимание природы льда может иметь бесценное значение для различных исследований. Научная работа способна помочь, например, развитию метеорологии, где образование льда с помощью предшественников, подобных льду-0, может оказывать гораздо более заметное влияние на мелкие капли воды, подобные тем, что находятся в облаках. Понимание природы льда может принести пользу и в технологиях — от пищевой промышленности до кондиционирования воздуха.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Спутники NASA показывают, что Антарктида значительно обросла льдом за последние годы
Как такое возможно, если глобальная температура постоянно повышается?...

Истребитель ВВС США столкнулся в небе… с НЛО
Эксперты теряются в догадках, кто взял на таран F-16 Viper?...

Тюменские таксисты подняли «бунт» против Яндекса, используя возможности Telegram
Как обычные люди, используя «народные технологии», бросают вызов цифровым гигантам....

Смертельные супербактерии оккупировали больницы: почему стерильность больше не спасает?
Как новейшие технологии помогли микробам стать неуязвимыми....

Что превратило Луну в вулканический ад, где извержения происходили постоянно?
Ученые говорят: кошмар продолжался десятки миллионов лет подряд....

Оказывается, полиция в Индии уже 20 лет «читает» мысли преступников
Почему западные эксперты настроены против метода BEOS?...

Зрение 2.0: Почему через 10 лет все будут носить линзы Super-vision
Новая китайская технология — это не просто ночное зрение, это новый способ увидеть мир....