
Лёд-0: учёные поняли дополнительный механизм замерзания воды
Специалисты из Токийского университета обнаружили, что лёд начинает формироваться у водной поверхности через образования, подобные редкому, недавно открытому типу льда.
Лёд куда сложнее, чем многие думают. Физики знают более 20 его разновидностей, которые формируются в зависимости от сочетаний «давление + температура». Вид льда, который мы используем на кухне, известен как лёд-I, и это одна из немногих форм затвердевшей воды, существующих в естественных условиях на нашей планете.
Учёные из Японии выявили необычную форму — лёд-0, и она участвует в возникновении кристаллов в переохлаждённой воде. Зарождение льда у её поверхности может начинаться с крошечных кристалликов-предшественников со структурой, подобной редкому типу льда. Его-то и решили обозначать как лёд-0.
Учёные из Токио доказали, что структуры, подобные льду-0, могут вызывать замерзание капли у её поверхности, а не в сердцевине. Совершённое ими открытие разрешает давнюю загадку фазового перехода из одного состояния вещества в другое и должно повлиять на наше понимание того, как образуется лёд.
Кстати, кристаллизацию льда ещё называют зародышеобразованием. И происходит она обычно гетерогенно, то есть вблизи твёрдой поверхности. Обычно ожидается, что это случится наверху ёмкости с водой, где жидкость встречается со стенками.
Новое же исследование поведало, что кристаллизация также бывает прямо под поверхностью воды, которая соприкасается с воздухом. В таком случае лёд способен зарождаться вокруг крошечных кристаллических предшественников с той же специфической кольцеобразной структурой, что и лёд-0.
Компьютерное моделирование подтвердило, что капля с большей вероятностью начинает затвердевать вблизи свободной поверхности при изотермических условиях, то есть при постоянной температуре, объяснил ведущий автор исследования Ган Сан. Это разрешает давние споры о том, где легче происходит кристаллизация — на поверхности или внутри жидкости.
Предшественники (зародыши) льда-0 имеют структуру, очень похожую на переохлаждённую воду, что позволяет молекулам воды легче кристаллизоваться из неё, без необходимости непосредственно формировать структуру обычного льда.
Крошечные предшественники льда-0 образуются спонтанно в результате воздействия отрицательного давления, вызванного поверхностным натяжением воды. Как только из этих предшественников начинается кристаллизация, структуры, подобные льду-0, быстро перестраиваются в более распространённый на планете лёд-I.
Старший автор описываемого изучения льда Хадзиме Танака подчеркнул широкомасштабные последствия обретённых знаний. Ожидается, что выводы о механизме поверхностной кристаллизации воды внесут значительный вклад в различные области, включая исследования климата и науку о продуктах питания, где кристаллизация воды играет решающую роль.
Более детальное понимание природы льда может иметь бесценное значение для различных исследований. Научная работа способна помочь, например, развитию метеорологии, где образование льда с помощью предшественников, подобных льду-0, может оказывать гораздо более заметное влияние на мелкие капли воды, подобные тем, что находятся в облаках. Понимание природы льда может принести пользу и в технологиях — от пищевой промышленности до кондиционирования воздуха.
Лёд куда сложнее, чем многие думают. Физики знают более 20 его разновидностей, которые формируются в зависимости от сочетаний «давление + температура». Вид льда, который мы используем на кухне, известен как лёд-I, и это одна из немногих форм затвердевшей воды, существующих в естественных условиях на нашей планете.
Учёные из Японии выявили необычную форму — лёд-0, и она участвует в возникновении кристаллов в переохлаждённой воде. Зарождение льда у её поверхности может начинаться с крошечных кристалликов-предшественников со структурой, подобной редкому типу льда. Его-то и решили обозначать как лёд-0.
Учёные из Токио доказали, что структуры, подобные льду-0, могут вызывать замерзание капли у её поверхности, а не в сердцевине. Совершённое ими открытие разрешает давнюю загадку фазового перехода из одного состояния вещества в другое и должно повлиять на наше понимание того, как образуется лёд.
Кстати, кристаллизацию льда ещё называют зародышеобразованием. И происходит она обычно гетерогенно, то есть вблизи твёрдой поверхности. Обычно ожидается, что это случится наверху ёмкости с водой, где жидкость встречается со стенками.
Новое же исследование поведало, что кристаллизация также бывает прямо под поверхностью воды, которая соприкасается с воздухом. В таком случае лёд способен зарождаться вокруг крошечных кристаллических предшественников с той же специфической кольцеобразной структурой, что и лёд-0.
Компьютерное моделирование подтвердило, что капля с большей вероятностью начинает затвердевать вблизи свободной поверхности при изотермических условиях, то есть при постоянной температуре, объяснил ведущий автор исследования Ган Сан. Это разрешает давние споры о том, где легче происходит кристаллизация — на поверхности или внутри жидкости.
Предшественники (зародыши) льда-0 имеют структуру, очень похожую на переохлаждённую воду, что позволяет молекулам воды легче кристаллизоваться из неё, без необходимости непосредственно формировать структуру обычного льда.
Крошечные предшественники льда-0 образуются спонтанно в результате воздействия отрицательного давления, вызванного поверхностным натяжением воды. Как только из этих предшественников начинается кристаллизация, структуры, подобные льду-0, быстро перестраиваются в более распространённый на планете лёд-I.
Старший автор описываемого изучения льда Хадзиме Танака подчеркнул широкомасштабные последствия обретённых знаний. Ожидается, что выводы о механизме поверхностной кристаллизации воды внесут значительный вклад в различные области, включая исследования климата и науку о продуктах питания, где кристаллизация воды играет решающую роль.
Более детальное понимание природы льда может иметь бесценное значение для различных исследований. Научная работа способна помочь, например, развитию метеорологии, где образование льда с помощью предшественников, подобных льду-0, может оказывать гораздо более заметное влияние на мелкие капли воды, подобные тем, что находятся в облаках. Понимание природы льда может принести пользу и в технологиях — от пищевой промышленности до кондиционирования воздуха.
- Дмитрий Ладыгин
- freepik.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

32 удивительных подарка за последние 20 лет: ученые пытаются понять, за что косатки «балуют» людей
Природная доброта? Любопытство? Желание выйти на контакт?...

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

«Вертолетная» конструкция да Винчи может сделать беспилотники тише, быстрее и даже дешевле
Ученые поражены, насколько разработка Леонардо опередила время....

Ученые и режиссеры все время обманывали нас насчет динозавров
Оказалось, древние ящеры бегали в четыре раза медленнее, чем считалось....

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....