
Британцы разработали упругие батарейки-тянучки
Специалисты из Кембриджского университета разработали эластичные желеобразные батарейки, которые в перспективе можно будет использовать для создания носимых устройств и мягкой робототехники. А также рассматривается вариант имплантировать их в мозг для лечения таких неврологических недугов, как эпилепсия.
Изобретатели почерпнули основу идеи в биологии: электрические угри оглушают своих жертв разрядом из электроцитов, видоизменённых мышечных клеток. Подобно электроцитам, «желешки» из Кембриджа слоисты, вроде липкого подобия «Лего», что придаёт им способность пропускать электроток.
Желеобразные батарейки с памятью первоначальной формы можно растягивать более чем в десять раз от исходной длины без ущерба для электропроводности. Создатели утверждают, что скрестить такую степень растяжимости и электропроводность в едином материале удалось впервые.
Желеобразные батарейки скомпонованы из гидрогелей — трёхмерных полимерных сеток, более чем на 60% насыщенных водой. Полимеры сохраняют целостность за счёт обратимых взаимодействий, контролирующих механические свойства желе.
Пригодность для имитации физических характеристик человеческих тканей делает гидрогели превосходными кандидатами для применения в мягкой робототехнике и биоэлектронике. Однако для использования таким образом они должны быть токопроводящими и эластичными.
Первый автор научного проекта Стивен О’Нил признался, что было непросто разработать материал, обладающий сразу и отличной растяжимостью, и электропроводностью. Ранее эти два свойства считались противоположностями, так как проводимость имела склонность уменьшаться, когда материал растягивали.
Обычно гидрогели изготавливают из полимеров с нейтральным зарядом, добавил соавтор изобретения Джейд Маккьюн. Но они могут стать токопроводящими, если изменить солевую составляющую каждого геля, сделав липкой и спрессовав вместе несколько слоёв, дабы повысить энергетический потенциал.
В обычной электронике используются жёсткие детали с металлами, в которых носителями заряда служат электроны. А в изобретённых желеобразных батарейках для переноса заряда используются ионы, как в тканях электрических угрей.
Гидрогели накрепко пристают друг к другу за счёт обратимых связей между слоями с помощью похожих на наручники молекул-контейнеров, называемых кукурбитурилами. Прочная адгезия (прилипание) между слоями, обеспечиваемая такими молекулами, позволяет растягивать желеобразные батарейки без разрыва слоёв и не теряя электропроводности.
Руководивший исследованием профессор Орен Шерман объяснил, что свойства желеобразных батареек — мягкость и адаптируемость — делают их интересными для применения в медицинских имплантатах в будущем. То есть можно отрегулировать механические показатели гидрогелей так, чтобы они соответствовали тканям человека. Не содержащий жёстких металлов гидрогелевый имплантат с гораздо меньшей вероятностью будет отторгнут организмом и едва ли вызовет рубцевание тканей.
Наряду со своей мягкостью гидрогели также очень прочны. Они успешно переносят раздавливание без необратимой потери своей первоначальной формы и могут восстанавливаться после приложенного к ним усилия.
Теперь авторы упругих батареек-тянучек планируют протестировать гидрогели на подопытных животных, чтобы оценить пригодность разработки для медицины.
Изобретатели почерпнули основу идеи в биологии: электрические угри оглушают своих жертв разрядом из электроцитов, видоизменённых мышечных клеток. Подобно электроцитам, «желешки» из Кембриджа слоисты, вроде липкого подобия «Лего», что придаёт им способность пропускать электроток.
Желеобразные батарейки с памятью первоначальной формы можно растягивать более чем в десять раз от исходной длины без ущерба для электропроводности. Создатели утверждают, что скрестить такую степень растяжимости и электропроводность в едином материале удалось впервые.
Желеобразные батарейки скомпонованы из гидрогелей — трёхмерных полимерных сеток, более чем на 60% насыщенных водой. Полимеры сохраняют целостность за счёт обратимых взаимодействий, контролирующих механические свойства желе.
Пригодность для имитации физических характеристик человеческих тканей делает гидрогели превосходными кандидатами для применения в мягкой робототехнике и биоэлектронике. Однако для использования таким образом они должны быть токопроводящими и эластичными.
Первый автор научного проекта Стивен О’Нил признался, что было непросто разработать материал, обладающий сразу и отличной растяжимостью, и электропроводностью. Ранее эти два свойства считались противоположностями, так как проводимость имела склонность уменьшаться, когда материал растягивали.
Обычно гидрогели изготавливают из полимеров с нейтральным зарядом, добавил соавтор изобретения Джейд Маккьюн. Но они могут стать токопроводящими, если изменить солевую составляющую каждого геля, сделав липкой и спрессовав вместе несколько слоёв, дабы повысить энергетический потенциал.
В обычной электронике используются жёсткие детали с металлами, в которых носителями заряда служат электроны. А в изобретённых желеобразных батарейках для переноса заряда используются ионы, как в тканях электрических угрей.
Гидрогели накрепко пристают друг к другу за счёт обратимых связей между слоями с помощью похожих на наручники молекул-контейнеров, называемых кукурбитурилами. Прочная адгезия (прилипание) между слоями, обеспечиваемая такими молекулами, позволяет растягивать желеобразные батарейки без разрыва слоёв и не теряя электропроводности.
Руководивший исследованием профессор Орен Шерман объяснил, что свойства желеобразных батареек — мягкость и адаптируемость — делают их интересными для применения в медицинских имплантатах в будущем. То есть можно отрегулировать механические показатели гидрогелей так, чтобы они соответствовали тканям человека. Не содержащий жёстких металлов гидрогелевый имплантат с гораздо меньшей вероятностью будет отторгнут организмом и едва ли вызовет рубцевание тканей.
Наряду со своей мягкостью гидрогели также очень прочны. Они успешно переносят раздавливание без необратимой потери своей первоначальной формы и могут восстанавливаться после приложенного к ним усилия.
Теперь авторы упругих батареек-тянучек планируют протестировать гидрогели на подопытных животных, чтобы оценить пригодность разработки для медицины.
- Дмитрий Ладыгин
- science.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Запретные ритуалы Третьего рейха: Почему дело о изувеченных пяти телах в «Волчьем логове» было закрыто навсегда?
Эксперты говорят: «Надеясь переломить ход войны, нацисты творили абсолютно кошмарные вещи»...

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

Специалисты предупреждают: Через три года интернет будет скорее мертвым, чем живым
Почему к 2030 году человеческое общение в сети может стать роскошью, а не нормой?...

Ученые нашли уникальную молекулу, способную отключать… смерть
Потрясающая сверхспособность австралийского паука дает надежду сотням миллионов людей по всему миру...

Найдена самая похожая на Землю планета. Готовимся к переезду?
TRAPPIST-1e идеальная: тепло, есть вода и атмосфера. Чем же тогда недовольны астрофизики?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Археологи нашли медведя, который… побеждал гладиаторов
Исследование показало, что пленный зверь не хотел сдаваться до самого конца...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...