Британцы разработали упругие батарейки-тянучки
Специалисты из Кембриджского университета разработали эластичные желеобразные батарейки, которые в перспективе можно будет использовать для создания носимых устройств и мягкой робототехники. А также рассматривается вариант имплантировать их в мозг для лечения таких неврологических недугов, как эпилепсия.
Изобретатели почерпнули основу идеи в биологии: электрические угри оглушают своих жертв разрядом из электроцитов, видоизменённых мышечных клеток. Подобно электроцитам, «желешки» из Кембриджа слоисты, вроде липкого подобия «Лего», что придаёт им способность пропускать электроток.
Желеобразные батарейки с памятью первоначальной формы можно растягивать более чем в десять раз от исходной длины без ущерба для электропроводности. Создатели утверждают, что скрестить такую степень растяжимости и электропроводность в едином материале удалось впервые.
Желеобразные батарейки скомпонованы из гидрогелей — трёхмерных полимерных сеток, более чем на 60% насыщенных водой. Полимеры сохраняют целостность за счёт обратимых взаимодействий, контролирующих механические свойства желе.
Пригодность для имитации физических характеристик человеческих тканей делает гидрогели превосходными кандидатами для применения в мягкой робототехнике и биоэлектронике. Однако для использования таким образом они должны быть токопроводящими и эластичными.
Первый автор научного проекта Стивен О’Нил признался, что было непросто разработать материал, обладающий сразу и отличной растяжимостью, и электропроводностью. Ранее эти два свойства считались противоположностями, так как проводимость имела склонность уменьшаться, когда материал растягивали.
Обычно гидрогели изготавливают из полимеров с нейтральным зарядом, добавил соавтор изобретения Джейд Маккьюн. Но они могут стать токопроводящими, если изменить солевую составляющую каждого геля, сделав липкой и спрессовав вместе несколько слоёв, дабы повысить энергетический потенциал.
В обычной электронике используются жёсткие детали с металлами, в которых носителями заряда служат электроны. А в изобретённых желеобразных батарейках для переноса заряда используются ионы, как в тканях электрических угрей.
Гидрогели накрепко пристают друг к другу за счёт обратимых связей между слоями с помощью похожих на наручники молекул-контейнеров, называемых кукурбитурилами. Прочная адгезия (прилипание) между слоями, обеспечиваемая такими молекулами, позволяет растягивать желеобразные батарейки без разрыва слоёв и не теряя электропроводности.
Руководивший исследованием профессор Орен Шерман объяснил, что свойства желеобразных батареек — мягкость и адаптируемость — делают их интересными для применения в медицинских имплантатах в будущем. То есть можно отрегулировать механические показатели гидрогелей так, чтобы они соответствовали тканям человека. Не содержащий жёстких металлов гидрогелевый имплантат с гораздо меньшей вероятностью будет отторгнут организмом и едва ли вызовет рубцевание тканей.
Наряду со своей мягкостью гидрогели также очень прочны. Они успешно переносят раздавливание без необратимой потери своей первоначальной формы и могут восстанавливаться после приложенного к ним усилия.
Теперь авторы упругих батареек-тянучек планируют протестировать гидрогели на подопытных животных, чтобы оценить пригодность разработки для медицины.
Изобретатели почерпнули основу идеи в биологии: электрические угри оглушают своих жертв разрядом из электроцитов, видоизменённых мышечных клеток. Подобно электроцитам, «желешки» из Кембриджа слоисты, вроде липкого подобия «Лего», что придаёт им способность пропускать электроток.
Желеобразные батарейки с памятью первоначальной формы можно растягивать более чем в десять раз от исходной длины без ущерба для электропроводности. Создатели утверждают, что скрестить такую степень растяжимости и электропроводность в едином материале удалось впервые.
Желеобразные батарейки скомпонованы из гидрогелей — трёхмерных полимерных сеток, более чем на 60% насыщенных водой. Полимеры сохраняют целостность за счёт обратимых взаимодействий, контролирующих механические свойства желе.
Пригодность для имитации физических характеристик человеческих тканей делает гидрогели превосходными кандидатами для применения в мягкой робототехнике и биоэлектронике. Однако для использования таким образом они должны быть токопроводящими и эластичными.
Первый автор научного проекта Стивен О’Нил признался, что было непросто разработать материал, обладающий сразу и отличной растяжимостью, и электропроводностью. Ранее эти два свойства считались противоположностями, так как проводимость имела склонность уменьшаться, когда материал растягивали.
Обычно гидрогели изготавливают из полимеров с нейтральным зарядом, добавил соавтор изобретения Джейд Маккьюн. Но они могут стать токопроводящими, если изменить солевую составляющую каждого геля, сделав липкой и спрессовав вместе несколько слоёв, дабы повысить энергетический потенциал.
В обычной электронике используются жёсткие детали с металлами, в которых носителями заряда служат электроны. А в изобретённых желеобразных батарейках для переноса заряда используются ионы, как в тканях электрических угрей.
Гидрогели накрепко пристают друг к другу за счёт обратимых связей между слоями с помощью похожих на наручники молекул-контейнеров, называемых кукурбитурилами. Прочная адгезия (прилипание) между слоями, обеспечиваемая такими молекулами, позволяет растягивать желеобразные батарейки без разрыва слоёв и не теряя электропроводности.
Руководивший исследованием профессор Орен Шерман объяснил, что свойства желеобразных батареек — мягкость и адаптируемость — делают их интересными для применения в медицинских имплантатах в будущем. То есть можно отрегулировать механические показатели гидрогелей так, чтобы они соответствовали тканям человека. Не содержащий жёстких металлов гидрогелевый имплантат с гораздо меньшей вероятностью будет отторгнут организмом и едва ли вызовет рубцевание тканей.
Наряду со своей мягкостью гидрогели также очень прочны. Они успешно переносят раздавливание без необратимой потери своей первоначальной формы и могут восстанавливаться после приложенного к ним усилия.
Теперь авторы упругих батареек-тянучек планируют протестировать гидрогели на подопытных животных, чтобы оценить пригодность разработки для медицины.
- Дмитрий Ладыгин
- science.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
«Самолет Судного дня» ВМС США пропал над Атлантикой во время загадочной миссии
Правы ли западные СМИ, что подняли такой страшный шум?...
Похоже, что у чернобыльских грибов развились невероятные суперспособности
То, что эти микроорганизмы научились делать с радиацией, потрясло ученых...
Асимметричный ответ Маску: Китайские ученые заявили, что нашли управу на спутники Starlink
Выясняем, кто кого: армия дронов против созвездия орбитальных аппаратов...
Археологи наконец-то раскрыли тайну гибели легендарных мегаполисов в долине реки Инд
Выяснилось, что нашествия кочевников, эпидемии и социальные потрясения были вообще ни при чем. Все оказалось и проще, и сложнее...
Самая большая змея мира: почему анаконда не меняет размер 12 миллионов лет подряд?
Ученые говорят, что нашли разгадку этого феномена, но так ли это на самом деле?...
Герой России Артемьев и SpaceX: почему западные СМИ обвиняют российского космонавта в шпионаже?
NASA и Роскосмос сохраняют полное молчание. С чем же это связано?...
«В уши точно нож воткнули»: какой новый вирус напал на Россию в конце 2025 года?
Медики успокаивают население, но, как всегда, есть нюансы...
Ученые выяснили, что стало спусковым крючком самой смертельной эпидемии в истории — Черной смерти
Сложно поверить, но небольшой климатический «эффект бабочки» в итоге обернулся гибелью десятков миллионов людей в Европе и на Руси...
Переброска воды из северных рек в Донбасс: что предложили ученые и почему это вызвало споры?
Академия наук поставила на паузу 2000 км труб, 8 триллионов рублей и гнев северян...
2000 лет жизни на супервулкане: итальянские ученые сумели разгадать секрет сверхустойчивости и нерушимости древнего храма
Оказалось, римский бетон не старился, а крепчал с каждым веком. И теперь мы знаем почему...
Урок для всей планеты: почему ГМО-кукуруза в США породила супервредителей?
Монстры-насекомые теперь летают на сотни километров и уничтожают все подряд...