Новый инструмент обнаруживает видео, созданные искусственным интеллектом, с точностью 93,7%
В этом году сотрудник многонациональной корпорации перевел мошенникам 25 млн долларов. Инструкции по переводу денег, как он думал, ему прислал финансовый директор компании. На самом деле преступники использовали программу искусственного интеллекта для создания реалистичных видеороликов с участием финдиректора и нескольких коллег бедолаги.
Видеоролики, созданные искусственным интеллектом, стали настолько реалистичными, что люди (и существующие системы обнаружения) испытывают трудности с различением настоящего и поддельного видео. Чтобы решить эту проблему, исследователи из Колумбийского инженерного факультета под руководством профессора компьютерных наук Чжунфэн Янга разработали новый инструмент для обнаружения видеороликов, созданных искусственным интеллектом.
Инструмент назвали DIVID (DIffusion-generated VIdeo Detector). Он расширяет проект команды, выпустившей ранее инструмент Raidar. Программа обнаруживает тексты, созданные искусственным интеллектом, анализируя их содержимое, без необходимости доступа к внутренним механизмам больших языковых моделей.
В первом столбце на фото: видеокадры с YouTube и фейковые видеоролики, созданные OpenAI из Sora. Во втором — кадры, восстановленные методом диффузии, а в конце отражены различия между первым и вторым столбцами.
DIRE (Ошибка реконструкции DIffusion) — это метод, который измеряет разницу между входным и соответствующим выходным изображением, восстановленным с помощью предварительно обученной диффузионной модели.
Как демонстрирует иллюстрация, реальные видеокадры имеют больше отличий от восстановленных кадров, чем от видео, созданного диффузией Это и является ключевым моментом для DIVID в обнаружении фальшивого видео.
DIVID обнаруживает новое поколение видеороликов, созданных генеративным искусственным интеллектом. Он улучшает существующие методы, которые эффективно выявляют видео, созданные старыми моделями ИИ, такими как генеративные антагонистические сети (GAN).
GAN — это система искусственного интеллекта с двумя нейронными сетями: одна создает фальшивые данные, а другая оценивает их, чтобы отличать поддельное от реального. Путем непрерывной обратной связи обе сети улучшаются, что приводит к высококачественному синтетическому видео, практически неотличимому от подлинного.
Текущие инструменты обнаружения искусственного интеллекта ищут характерные признаки — необычное расположение пикселей, ненатуральные движения или несоответствия между кадрами, которые обычно не возникают в реальных видео. Однако новое поколение инструментов с использованием диффузионной модели бросило вызов в области обнаружения фейков.
Raidar использует языковую модель для переформулирования или изменения текста, а затем измеряет количество правок, внесенных системой в исходный текст. Большое количество правок означает, что текст, скорее всего, написан человеком, в то время как меньшее число модификаций указывает на то, что текст, скорее всего, создан машиной.
— Янг.
Научная статья, включающая в себя открытый код и наборы данных, была представлена на конференции по компьютерному зрению и распознаванию образов (CVPR) в Сиэтле 18 июня 2024 года.
В настоящее время исследователи работают над улучшением платформы DIVID, чтобы она могла обрабатывать различные виды синтетических видео из инструментов создания видео с открытым исходным кодом. Они также используют DIVID для сбора видео для набора данных DIVID.
Видеоролики, созданные искусственным интеллектом, стали настолько реалистичными, что люди (и существующие системы обнаружения) испытывают трудности с различением настоящего и поддельного видео. Чтобы решить эту проблему, исследователи из Колумбийского инженерного факультета под руководством профессора компьютерных наук Чжунфэн Янга разработали новый инструмент для обнаружения видеороликов, созданных искусственным интеллектом.
Инструмент назвали DIVID (DIffusion-generated VIdeo Detector). Он расширяет проект команды, выпустившей ранее инструмент Raidar. Программа обнаруживает тексты, созданные искусственным интеллектом, анализируя их содержимое, без необходимости доступа к внутренним механизмам больших языковых моделей.
В первом столбце на фото: видеокадры с YouTube и фейковые видеоролики, созданные OpenAI из Sora. Во втором — кадры, восстановленные методом диффузии, а в конце отражены различия между первым и вторым столбцами.
DIRE (Ошибка реконструкции DIffusion) — это метод, который измеряет разницу между входным и соответствующим выходным изображением, восстановленным с помощью предварительно обученной диффузионной модели.
Как демонстрирует иллюстрация, реальные видеокадры имеют больше отличий от восстановленных кадров, чем от видео, созданного диффузией Это и является ключевым моментом для DIVID в обнаружении фальшивого видео.
DIVID обнаруживает новое поколение видеороликов, созданных генеративным искусственным интеллектом. Он улучшает существующие методы, которые эффективно выявляют видео, созданные старыми моделями ИИ, такими как генеративные антагонистические сети (GAN).
GAN — это система искусственного интеллекта с двумя нейронными сетями: одна создает фальшивые данные, а другая оценивает их, чтобы отличать поддельное от реального. Путем непрерывной обратной связи обе сети улучшаются, что приводит к высококачественному синтетическому видео, практически неотличимому от подлинного.
Текущие инструменты обнаружения искусственного интеллекта ищут характерные признаки — необычное расположение пикселей, ненатуральные движения или несоответствия между кадрами, которые обычно не возникают в реальных видео. Однако новое поколение инструментов с использованием диффузионной модели бросило вызов в области обнаружения фейков.
Преобразование текстов, сгенерированных AI Raidar, в видео
Raidar использует языковую модель для переформулирования или изменения текста, а затем измеряет количество правок, внесенных системой в исходный текст. Большое количество правок означает, что текст, скорее всего, написан человеком, в то время как меньшее число модификаций указывает на то, что текст, скорее всего, создан машиной.
Основное открытие заключается в том, что данные, полученные от ИИ, другие языковые модели оценивают как качественые, поэтому ИИ вносит меньше правок. Учитывая, что генерируемое видео становится все более реалистичным, мы решили взять идею из Raidar и создать инструмент, который точно определит видео, созданное ИИ
— Янг.
Научная статья, включающая в себя открытый код и наборы данных, была представлена на конференции по компьютерному зрению и распознаванию образов (CVPR) в Сиэтле 18 июня 2024 года.
В настоящее время исследователи работают над улучшением платформы DIVID, чтобы она могла обрабатывать различные виды синтетических видео из инструментов создания видео с открытым исходным кодом. Они также используют DIVID для сбора видео для набора данных DIVID.
- Алексей Павлов
- Software Systems Laboratory/Columbia Engineering
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Почему Китай так стремительно обгоняет США: Эксперт вскрыл секрет, который не замечал никто
Аналитик Дэн Ван уверен: если Запад не начнет срочно меняться, то он обречен перед Востоком...
Урок для всей планеты: почему ГМО-кукуруза в США породила супервредителей?
Монстры-насекомые теперь летают на сотни километров и уничтожают все подряд...
Герой России Артемьев и SpaceX: почему западные СМИ обвиняют российского космонавта в шпионаже?
NASA и Роскосмос сохраняют полное молчание. С чем же это связано?...
Ученые выяснили, что стало спусковым крючком самой смертельной эпидемии в истории — Черной смерти
Сложно поверить, но небольшой климатический «эффект бабочки» в итоге обернулся гибелью десятков миллионов людей в Европе и на Руси...
Самая большая змея мира: почему анаконда не меняет размер 12 миллионов лет подряд?
Ученые говорят, что нашли разгадку этого феномена, но так ли это на самом деле?...
Невероятная находка в Дании: как золотые копья возрастом 2800 лет могут переписать историю Европы?
Ученые рассказали, зачем древние люди закопали драгоценное оружие у священного источника. Ответ потрясает...
Карликовые люди-хоббиты не вымерли 50 000 лет назад. Они до сих пор прячутся в горах Индонезии
Профессор Форт собрал десятки свидетельств очевидцев, но большинство ученых против. Кто же прав — кабинетные скептики или полевой исследователь?...
Переброска воды из северных рек в Донбасс: что предложили ученые и почему это вызвало споры?
Академия наук поставила на паузу 2000 км труб, 8 триллионов рублей и гнев северян...
Великий обман древности: итальянские ученые доказали, что историк соврал о гибели Помпей
Случайная надпись на стене перечеркнула официальную дату смерти города...
Почему Китай так стремительно обгоняет США: секрет, который не замечал никто. Часть 2
Уханьское метро, темная сторона инженерного государства и есть ли шансы у Штатов...
Новый российский материал спасает от пожаров и взрывов аккумуляторов
Почему эксперты называют разработку сахалинских ученых настоящим прорывом в сохранении энергии?...