Более быстрый метод обучения роботов испытали на унитазе
Исследователи из Имперского колледжа Лондона и Лаборатории обучения роботов компании Dyson представили метод Render and Diffuse (R&D), то есть «Визуализация и распространение». Так они назвали подход, который объединяет в роботизированной системе низкоуровневые (простые) действия и изображения в формате RBG с использованием виртуальной трёхмерной визуализации.
Утверждается, что представленный метод может в конечном итоге облегчить процесс обучения роботов новым навыкам. А также сократить огромное количество обучающих демонстраций с помощью человека, как того пока ещё требуют многие существующие технологии.
Ведущий автор разработки — Виталис Восилиус, аспирант Имперского колледжа Лондона. Во время стажировки в Dyson он занимался упрощением задач по обучению роботов, позволив устройствам более эффективно прогнозировать нужные действия.
Метод R&D позволяет роботам «представлять» свои действия на основе картинок, используя виртуальные рендеры, то есть преобразования трёхмерной модели из компьютерной программы в изображение.
Иными словами, используя широко доступные 3D-модели роботов и методы рендеринга, можно значительно упростить приобретение новых навыков устройствами, а также существенно снизить требования к объёму данных для обучения.
Итак, чтобы робот выполнил новую задачу, ему сначала необходимо спрогнозировать действия, которые он должен совершить, на основе изображений, получаемых датчиками. Метод R&D, по сути, позволяет роботам более эффективно соотносить изображения и действия.
Как следует из названия, новый подход состоит из двух основных этапов, объяснил Восилиус. Во-первых, устройство «воображает» свои действия практически так же, как воспринимает окружающую среду. Для этого происходит визуализация (отображение) момента, в котором он оказался бы, если бы выполнял определённые действия. Во-вторых, происходит уточнение эти воображаемых действий, что в конечном итоге приводит к последовательности реальных движений для выполнения задачи.
Исследователи оценили свой метод в серии компьютерных симуляций и обнаружили, что добились оптимизации. Затем убедились в том, что избрали верный путь, испытав реального физического робота при выполнении им шести повседневных задач. Робот опускал сиденье унитаза, наводил порядок в шкафу, открывал картонную коробку, укладывал яблоко в тумбочку, открывая и закрывая её.
В конечном счёте, исследователи упростили алгоритм обучения и теперь рассчитывают применить свой подход в программных продуктах для прочей робототехники.
Утверждается, что представленный метод может в конечном итоге облегчить процесс обучения роботов новым навыкам. А также сократить огромное количество обучающих демонстраций с помощью человека, как того пока ещё требуют многие существующие технологии.
Ведущий автор разработки — Виталис Восилиус, аспирант Имперского колледжа Лондона. Во время стажировки в Dyson он занимался упрощением задач по обучению роботов, позволив устройствам более эффективно прогнозировать нужные действия.
Метод R&D позволяет роботам «представлять» свои действия на основе картинок, используя виртуальные рендеры, то есть преобразования трёхмерной модели из компьютерной программы в изображение.
Иными словами, используя широко доступные 3D-модели роботов и методы рендеринга, можно значительно упростить приобретение новых навыков устройствами, а также существенно снизить требования к объёму данных для обучения.
Итак, чтобы робот выполнил новую задачу, ему сначала необходимо спрогнозировать действия, которые он должен совершить, на основе изображений, получаемых датчиками. Метод R&D, по сути, позволяет роботам более эффективно соотносить изображения и действия.
Как следует из названия, новый подход состоит из двух основных этапов, объяснил Восилиус. Во-первых, устройство «воображает» свои действия практически так же, как воспринимает окружающую среду. Для этого происходит визуализация (отображение) момента, в котором он оказался бы, если бы выполнял определённые действия. Во-вторых, происходит уточнение эти воображаемых действий, что в конечном итоге приводит к последовательности реальных движений для выполнения задачи.
Исследователи оценили свой метод в серии компьютерных симуляций и обнаружили, что добились оптимизации. Затем убедились в том, что избрали верный путь, испытав реального физического робота при выполнении им шести повседневных задач. Робот опускал сиденье унитаза, наводил порядок в шкафу, открывал картонную коробку, укладывал яблоко в тумбочку, открывая и закрывая её.
В конечном счёте, исследователи упростили алгоритм обучения и теперь рассчитывают применить свой подход в программных продуктах для прочей робототехники.
- Дмитрий Ладыгин
- arxiv.org/pdf/2405.18196
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Ляп на ляпе — так профессиональные историки оценили «Гладиатора 2»
Режиссер пришел в бешенство, когда фильм назвали исторически неточным....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученые рассказали о жутких последствиях сна
Что происходит, когда снится собственная смерть?...
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Невероятно! Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Филигранная работа: Механический скарабей поражает точностью
Робот способен полноценно манипулировать крупногабаритом даже в тесноте....