
Более быстрый метод обучения роботов испытали на унитазе
Исследователи из Имперского колледжа Лондона и Лаборатории обучения роботов компании Dyson представили метод Render and Diffuse (R&D), то есть «Визуализация и распространение». Так они назвали подход, который объединяет в роботизированной системе низкоуровневые (простые) действия и изображения в формате RBG с использованием виртуальной трёхмерной визуализации.
Утверждается, что представленный метод может в конечном итоге облегчить процесс обучения роботов новым навыкам. А также сократить огромное количество обучающих демонстраций с помощью человека, как того пока ещё требуют многие существующие технологии.
Ведущий автор разработки — Виталис Восилиус, аспирант Имперского колледжа Лондона. Во время стажировки в Dyson он занимался упрощением задач по обучению роботов, позволив устройствам более эффективно прогнозировать нужные действия.
Метод R&D позволяет роботам «представлять» свои действия на основе картинок, используя виртуальные рендеры, то есть преобразования трёхмерной модели из компьютерной программы в изображение.
Иными словами, используя широко доступные 3D-модели роботов и методы рендеринга, можно значительно упростить приобретение новых навыков устройствами, а также существенно снизить требования к объёму данных для обучения.
Итак, чтобы робот выполнил новую задачу, ему сначала необходимо спрогнозировать действия, которые он должен совершить, на основе изображений, получаемых датчиками. Метод R&D, по сути, позволяет роботам более эффективно соотносить изображения и действия.
Как следует из названия, новый подход состоит из двух основных этапов, объяснил Восилиус. Во-первых, устройство «воображает» свои действия практически так же, как воспринимает окружающую среду. Для этого происходит визуализация (отображение) момента, в котором он оказался бы, если бы выполнял определённые действия. Во-вторых, происходит уточнение эти воображаемых действий, что в конечном итоге приводит к последовательности реальных движений для выполнения задачи.

Исследователи оценили свой метод в серии компьютерных симуляций и обнаружили, что добились оптимизации. Затем убедились в том, что избрали верный путь, испытав реального физического робота при выполнении им шести повседневных задач. Робот опускал сиденье унитаза, наводил порядок в шкафу, открывал картонную коробку, укладывал яблоко в тумбочку, открывая и закрывая её.
В конечном счёте, исследователи упростили алгоритм обучения и теперь рассчитывают применить свой подход в программных продуктах для прочей робототехники.
Утверждается, что представленный метод может в конечном итоге облегчить процесс обучения роботов новым навыкам. А также сократить огромное количество обучающих демонстраций с помощью человека, как того пока ещё требуют многие существующие технологии.
Ведущий автор разработки — Виталис Восилиус, аспирант Имперского колледжа Лондона. Во время стажировки в Dyson он занимался упрощением задач по обучению роботов, позволив устройствам более эффективно прогнозировать нужные действия.
Метод R&D позволяет роботам «представлять» свои действия на основе картинок, используя виртуальные рендеры, то есть преобразования трёхмерной модели из компьютерной программы в изображение.
Иными словами, используя широко доступные 3D-модели роботов и методы рендеринга, можно значительно упростить приобретение новых навыков устройствами, а также существенно снизить требования к объёму данных для обучения.
Итак, чтобы робот выполнил новую задачу, ему сначала необходимо спрогнозировать действия, которые он должен совершить, на основе изображений, получаемых датчиками. Метод R&D, по сути, позволяет роботам более эффективно соотносить изображения и действия.
Как следует из названия, новый подход состоит из двух основных этапов, объяснил Восилиус. Во-первых, устройство «воображает» свои действия практически так же, как воспринимает окружающую среду. Для этого происходит визуализация (отображение) момента, в котором он оказался бы, если бы выполнял определённые действия. Во-вторых, происходит уточнение эти воображаемых действий, что в конечном итоге приводит к последовательности реальных движений для выполнения задачи.

Исследователи оценили свой метод в серии компьютерных симуляций и обнаружили, что добились оптимизации. Затем убедились в том, что избрали верный путь, испытав реального физического робота при выполнении им шести повседневных задач. Робот опускал сиденье унитаза, наводил порядок в шкафу, открывал картонную коробку, укладывал яблоко в тумбочку, открывая и закрывая её.
В конечном счёте, исследователи упростили алгоритм обучения и теперь рассчитывают применить свой подход в программных продуктах для прочей робототехники.
- Дмитрий Ладыгин
- arxiv.org/pdf/2405.18196
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Еще раз о ядерной войне на Марсе
Гипотетический конфликт на Красной планете не дает покоя некоторым ученым....

В мозгах спецназовцев обнаружились скрытые аномалии
Новейшее исследование показало, что обычный МРТ вообще не видит некоторые травмы головы....

Причина необъяснимых нападений морских львов на людей наконец-то раскрыта
Все дело в редком токсине, который заполонил прибрежные воды Калифорнии....

Ужасное наводнение создало Средиземное море всего за несколько месяцев
Потоп мчался со скоростью 115 километров в час....

Выяснилось, что суша вокруг Аральского моря... стремительно поднимается
И ученые сумели разгадать эту удивительную загадку природы....

Властелины огня: как древние люди поддерживали пламя в самые холодные времена
Основным топливом была древесина ели....

Термоядерный двигатель доставит людей до Марса всего за три месяца
Новая эра космических исследований вот-вот начнется?...

А фиолетовый-то, говорят… ненастоящий!
Ученые доказали, что этот цвет — иллюзия, существующая лишь у нас в голове....

Общий наркоз стирает уникальность головного мозга
Открытие поможет выводить пациентов из комы....

В каменных гробницах древней Ирландии похоронены вовсе не те, о ком думали ученые
Генетический анализ переписывает историю неолита....

Стало известно, как Земля «выкачала» воду с обратной стороны Луны
Сенсацию принес аппарат китайской миссии «Чанъэ-6»....

Новое исследование показало: мягкие игрушки — самые опасные вещи в доме
Микробов в этих предметах оказалось вдвое больше, чем на сиденье унитаза....

Ещё одна бесценная находка: челюсть с берегов Тайваня принадлежала денисовцу
Загадка не давала покоя несколько лет....

Раскрыт секрет: почему самые древние метеориты не долетают до Земли
Против само Солнце, но это не единственная причина....

Зачем археологи измерили и сравнили размеры 50 000 древних домов
Общественное расслоение нельзя считать неизбежным....

Обнаружен гриб, который содержит самое горькое на свете вещество
Эксперты рассказали, почему это сладкая находка для науки....