
Инженерные растительные материалы: учёные создали для 3D-печати живые чернила заданной расцветки
Учёные использовали живые клетки для новых материалов, которые могут расти, развиваться и реагировать на окружающую среду. Управляя такими клетками, появляется возможность вырастить их по заданной форме. На верхней иллюстрации — нанесённые на шаблон-снежинку генетически модифицированные растительные клетки с разницей в две недели, которые росли и набирали объём. Клетками печатали по шаблону, как биочернилами, с помощью 3D-принтера.
В последнее время исследователи разрабатывают живые инженерные материалы, полагаясь в основном на клетки бактерий и грибков в качестве живого компонента. Но у клеток растений — свои уникальные свойства, так что их также использовали для создания так называемых инженерных растительных живых материалов (EPLM). Однако материалы на основе растительных клеток до последнего времени представляли собой упрощённую версию структурно и ограниченную — функционально.
Цзыи Ю, Чжэнгао Ди и другие специалисты задались целью разработать EPLM сложной формы, с генетически модифицированными растительными клетками, чьё дальнейшее развитие и свойства можно было бы настраивать.
Учёные смешали клетки табака с микрочастицами желатина и гидрогеля, содержащими также бактерию Agrobacterium tumefaciens. Заметим, обычно этот микроорганизм используют для переноса определённых участков ДНК в геномы растений. Затем полученной смесью произвели печать с помощью 3D-принтера по форме — это была плоскость, покрытая избирательным образом другим гелем. Формы в неживом геле представляли собой сетки, снежинки, листья и спирали.
Затем напечатанный гидрогель для прочности отверждали специальным синим светом. В течение последующих 48 часов внутри EPLM бактерии переносили ДНК в растущие клетки табака. Затем материалы промывали антибиотиками, чтобы убить бактерии.
В последующие недели, по мере роста и деления растительных клеток в фигурках из EPLM, клетки начали вырабатывать белки и цвета по команде от привнесённой ДНК. Добавленная с бактериями ДНК побудила клетки табака производить зелёные светящиеся белки либо, как вариант, беталаины, то есть красные или жёлтые растительные пигменты, которые ценятся как натуральные красители и пищевые добавки. Через 24 дня цвета стали отчётливыми, как видно на фотографии с результатами роста биочернил в форме листка.

Для этого в форме листка печатали двумя разными биочернилами. Один тип материала выработал красный пигмент вдоль «прожилок», а другой — жёлтый краситель на остальной площади листка. Таким образом исследователи показали, что их технология позволяет создавать сложные, пространственно контролируемые и многофункциональные структуры.
Итак, разработанные EPLM сочетают признаки живых организмов со стабильностью и долговечностью неживых веществ. Создатели надеются, что новинка найдёт применение на неких клеточных фабриках для производства растительных препаратов, лекарственных белков или даже для экологичного строительства.
В последнее время исследователи разрабатывают живые инженерные материалы, полагаясь в основном на клетки бактерий и грибков в качестве живого компонента. Но у клеток растений — свои уникальные свойства, так что их также использовали для создания так называемых инженерных растительных живых материалов (EPLM). Однако материалы на основе растительных клеток до последнего времени представляли собой упрощённую версию структурно и ограниченную — функционально.
Цзыи Ю, Чжэнгао Ди и другие специалисты задались целью разработать EPLM сложной формы, с генетически модифицированными растительными клетками, чьё дальнейшее развитие и свойства можно было бы настраивать.
Учёные смешали клетки табака с микрочастицами желатина и гидрогеля, содержащими также бактерию Agrobacterium tumefaciens. Заметим, обычно этот микроорганизм используют для переноса определённых участков ДНК в геномы растений. Затем полученной смесью произвели печать с помощью 3D-принтера по форме — это была плоскость, покрытая избирательным образом другим гелем. Формы в неживом геле представляли собой сетки, снежинки, листья и спирали.
Затем напечатанный гидрогель для прочности отверждали специальным синим светом. В течение последующих 48 часов внутри EPLM бактерии переносили ДНК в растущие клетки табака. Затем материалы промывали антибиотиками, чтобы убить бактерии.
В последующие недели, по мере роста и деления растительных клеток в фигурках из EPLM, клетки начали вырабатывать белки и цвета по команде от привнесённой ДНК. Добавленная с бактериями ДНК побудила клетки табака производить зелёные светящиеся белки либо, как вариант, беталаины, то есть красные или жёлтые растительные пигменты, которые ценятся как натуральные красители и пищевые добавки. Через 24 дня цвета стали отчётливыми, как видно на фотографии с результатами роста биочернил в форме листка.

Для этого в форме листка печатали двумя разными биочернилами. Один тип материала выработал красный пигмент вдоль «прожилок», а другой — жёлтый краситель на остальной площади листка. Таким образом исследователи показали, что их технология позволяет создавать сложные, пространственно контролируемые и многофункциональные структуры.
Итак, разработанные EPLM сочетают признаки живых организмов со стабильностью и долговечностью неживых веществ. Создатели надеются, что новинка найдёт применение на неких клеточных фабриках для производства растительных препаратов, лекарственных белков или даже для экологичного строительства.
- Дмитрий Ладыгин
- dx.doi.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Еще раз о ядерной войне на Марсе
Гипотетический конфликт на Красной планете не дает покоя некоторым ученым....

Причина необъяснимых нападений морских львов на людей наконец-то раскрыта
Все дело в редком токсине, который заполонил прибрежные воды Калифорнии....

Выяснилось, что суша вокруг Аральского моря... стремительно поднимается
И ученые сумели разгадать эту удивительную загадку природы....

Ужасное наводнение создало Средиземное море всего за несколько месяцев
Потоп мчался со скоростью 115 километров в час....

Властелины огня: как древние люди поддерживали пламя в самые холодные времена
Основным топливом была древесина ели....

Термоядерный двигатель доставит людей до Марса всего за три месяца
Новая эра космических исследований вот-вот начнется?...

А фиолетовый-то, говорят… ненастоящий!
Ученые доказали, что этот цвет — иллюзия, существующая лишь у нас в голове....

В каменных гробницах древней Ирландии похоронены вовсе не те, о ком думали ученые
Генетический анализ переписывает историю неолита....

Общий наркоз стирает уникальность головного мозга
Открытие поможет выводить пациентов из комы....

Стало известно, как Земля «выкачала» воду с обратной стороны Луны
Сенсацию принес аппарат китайской миссии «Чанъэ-6»....

Новое исследование показало: мягкие игрушки — самые опасные вещи в доме
Микробов в этих предметах оказалось вдвое больше, чем на сиденье унитаза....

Ещё одна бесценная находка: челюсть с берегов Тайваня принадлежала денисовцу
Загадка не давала покоя несколько лет....

Раскрыт секрет: почему самые древние метеориты не долетают до Земли
Против само Солнце, но это не единственная причина....

Зачем археологи измерили и сравнили размеры 50 000 древних домов
Общественное расслоение нельзя считать неизбежным....

Ученые доказали: вода на Земле не из космоса, а своя собственная
Она зародилась «автоматически». И это в корне меняет теорию жизни во Вселенной....

Обнаружен гриб, который содержит самое горькое на свете вещество
Эксперты рассказали, почему это сладкая находка для науки....